Approximation of periodic solutions for a dissipative hyperbolic equation

被引:0
|
作者
Nicolae Cîndea
Sorin Micu
Jardel Morais Pereira
机构
[1] Université Blaise Pascal (Clermont-Ferrand 2),Laboratoire de Mathématiques
[2] University of Craiova,Department of Mathematics
[3] Federal University of Santa Catarina,Department of Mathematics
[4] BCAM-Basque Center for Applied Mathematics,undefined
来源
Numerische Mathematik | 2013年 / 124卷
关键词
35B10; 65P99; 93C20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the numerical approximation of periodic solutions for an exponentially stable linear hyperbolic equation in the presence of a periodic external force \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}. These approximations are obtained by combining a fixed point algorithm with the Galerkin method. It is known that the energy of the usual discrete models does not decay uniformly with respect to the mesh size. Our aim is to analyze this phenomenon’s consequences on the convergence of the approximation method and its error estimates. We prove that, under appropriate regularity assumptions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}, the approximation method is always convergent. However, our error estimates show that the convergence’s properties are improved if a numerically vanishing viscosity is added to the system. The same is true if the nonhomogeneous term \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} is monochromatic. To illustrate our theoretical results we present several numerical simulations with finite element approximations of the wave equation in one or two dimensional domains and with different forcing terms.
引用
收藏
页码:559 / 601
页数:42
相关论文
共 50 条
  • [41] Behavior as t → ∞ of Solutions of a Mixed Problem for a Hyperbolic Equation with Periodic Coefficients on the Semi-Axis
    Matevossian, Hovik A.
    Smirnov, Vladimir Yu.
    SYMMETRY-BASEL, 2023, 15 (03):
  • [42] Explicit construction of attracting integral manifolds for a dissipative hyperbolic equation
    Goritsky A.Yu.
    Journal of Mathematical Sciences, 2007, 143 (4) : 3239 - 3252
  • [43] Approximate solutions of the hyperbolic Kepler equation
    Avendano, Martin
    Martin-Molina, Veronica
    Ortigas-Galindo, Jorge
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2015, 123 (04): : 435 - 451
  • [44] Approximate solutions of the hyperbolic Kepler equation
    Martín Avendano
    Verónica Martín-Molina
    Jorge Ortigas-Galindo
    Celestial Mechanics and Dynamical Astronomy, 2015, 123 : 435 - 451
  • [45] GLOBAL SOLUTIONS TO A QUASILINEAR HYPERBOLIC EQUATION
    Miranda, Manuel Milla
    Medeiros, Luiz A.
    Louredo, Aldo T.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [46] NEW SOLUTIONS OF HYPERBOLIC TELEGRAPH EQUATION
    Inc, Mustafa
    Partohaghighi, Mohammad
    Akinlar, Mehmet Ali
    Weber, Gerhard-Wilhelm
    JOURNAL OF DYNAMICS AND GAMES, 2021, 8 (02): : 129 - 138
  • [47] ON SOLUTIONS TO THE WAVE EQUATION IN HYPERBOLIC SPACE
    MILES, JW
    JOURNAL OF APPLIED PHYSICS, 1952, 23 (12) : 1400 - 1400
  • [48] THE PERIODIC SOLUTIONS OF RICCATI EQUATION WITH PERIODIC COEFFICIENTS
    赵怀忠
    Chinese Science Bulletin, 1990, (23) : 2018 - 2020
  • [49] Periodic solutions of a delayed periodic logistic equation
    Chen, YM
    APPLIED MATHEMATICS LETTERS, 2003, 16 (07) : 1047 - 1051
  • [50] APPROXIMATION OF THE POISSON EQUATION SOLUTIONS
    MAIMESKUL, VV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1987, (06): : 5 - 7