Optimal Control Problems of Phase Relaxation Models

被引:0
|
作者
V. Barbu
M. L. Bernardi
P. Colli
G. Gilardi
机构
[1] University Al I. Cuza,Department of Mathematics
[2] University of Pavia,Department of Mathematics F. Casorati
关键词
optimal control problems; relaxed Stefan problem; memory effects; existence of optimal control; asymptotic analysis in terms of relaxation coefficient; necessary conditions of optimality;
D O I
暂无
中图分类号
学科分类号
摘要
This work is concerned with optimal control problems with convex cost criterion governed by the relaxed Stefan problem with or without memory. The existence of an optimal control is proved and necessary conditions for a given function to be an optimal control are found. Moreover, an asymptotic analysis is performed as the time relaxation parameter tends to zero.
引用
收藏
页码:557 / 585
页数:28
相关论文
共 50 条
  • [31] Optimal Control Problems with Integral Functional and Phase Constraints: Reduction to Optimal Consistency Parameter Problems
    Rovenskaya E.A.
    Journal of Mathematical Sciences, 2014, 199 (6) : 702 - 714
  • [32] ON GROUP ANALYSIS OF OPTIMAL CONTROL PROBLEMS IN ECONOMIC GROWTH MODELS
    Polat, Gulden Gun
    Ozer, Teoman
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (10): : 2853 - 2876
  • [33] ON PROBLEMS IN OPTIMAL PLANNING AND CONTROL IN MARKOV MODELS IN THEORY OF STORAGE
    CHITASHV.RY
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1967, 12 (04): : 703 - &
  • [34] A class of optimal control problems for piezoelectric frictional contact models
    Denkowski, Zdzislaw
    Migorski, Stanislaw
    Ochal, Anna
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (03) : 1883 - 1895
  • [35] Adjustment of Parameters in Ionic Models Using Optimal Control Problems
    Ngoma, Diogene Vianney Pongui
    Bourgault, Yves
    Pop, Mihaela
    Nkounkou, Hilaire
    FUNCTIONAL IMAGING AND MODELLING OF THE HEART, 2017, 10263 : 322 - 332
  • [36] DEEP LEARNING AS OPTIMAL CONTROL PROBLEMS: MODELS AND NUMERICAL METHODS
    Benning, Martin
    Celledoni, Elena
    Ehrhardt, Matthias J.
    Owren, Brynjulf
    Schonlieb, Carola-Bibiane
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2019, 6 (02): : 171 - 198
  • [37] Linear multistep methods for optimal control problems and applications to hyperbolic relaxation systems
    Albi, G.
    Herty, M.
    Pareschi, L.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 354 : 460 - 477
  • [38] Relaxation methods for hyperbolic PDE mixed-integer optimal control problems
    Hante, Falk M.
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2017, 38 (06): : 1103 - 1110
  • [39] A RELAXATION APPROACH TO DISCRETIZATION OF BOUNDARY OPTIMAL CONTROL PROBLEMS OF SEMILINEAR PARABOLIC EQUATIONS
    Kokkinis, B.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2019, 16 (05) : 731 - 744
  • [40] RELAXATION OF PROBLEMS OF OPTIMAL STRUCTURAL DESIGN
    CHERKAEV, AV
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1994, 31 (16) : 2251 - 2280