Optimal Control Problems of Phase Relaxation Models

被引:0
|
作者
V. Barbu
M. L. Bernardi
P. Colli
G. Gilardi
机构
[1] University Al I. Cuza,Department of Mathematics
[2] University of Pavia,Department of Mathematics F. Casorati
关键词
optimal control problems; relaxed Stefan problem; memory effects; existence of optimal control; asymptotic analysis in terms of relaxation coefficient; necessary conditions of optimality;
D O I
暂无
中图分类号
学科分类号
摘要
This work is concerned with optimal control problems with convex cost criterion governed by the relaxed Stefan problem with or without memory. The existence of an optimal control is proved and necessary conditions for a given function to be an optimal control are found. Moreover, an asymptotic analysis is performed as the time relaxation parameter tends to zero.
引用
收藏
页码:557 / 585
页数:28
相关论文
共 50 条
  • [1] Optimal control problems of phase relaxation models
    Barbu, V
    Bernardi, ML
    Colli, P
    Gilardi, G
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 109 (03) : 557 - 585
  • [2] Relaxation approximation of optimal control problems and applications to traffic flow models
    Albi, Giacomo
    Herty, Michael
    Pareschi, Lorenzo
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON FRONTIERS IN INDUSTRIAL AND APPLIED MATHEMATICS (FIAM-2018), 2018, 1975
  • [3] Relaxation and controllability in optimal control problems
    Avakov, E. R.
    Magaril-Il'yaev, G. G.
    SBORNIK MATHEMATICS, 2017, 208 (05) : 585 - 619
  • [4] Relaxation methods for optimal control problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    BULLETIN OF MATHEMATICAL SCIENCES, 2020, 10 (01)
  • [5] Convex Relaxation for Optimal Distributed Control Problems
    Fazelnia, Ghazal
    Madani, Ramtin
    Kalbat, Abdulrahman
    Lavaei, Javad
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (01) : 206 - 221
  • [6] PROPER RELAXATION OF OPTIMAL-CONTROL PROBLEMS
    ROSENBLUETH, JF
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 74 (03) : 509 - 526
  • [7] THE LAGRANGE RELAXATION METHOD IN OPTIMAL-CONTROL PROBLEMS
    BIGILDEYEV, SI
    GOLUBEV, YF
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 1993, 31 (04) : 21 - 27
  • [8] Relaxation of Minimax Optimal Control Problems with Infinite Horizon
    S. C. Di Marco
    R. L. V. González
    Journal of Optimization Theory and Applications, 1999, 101 : 285 - 306
  • [10] Relaxation in nonconvex optimal control problems with subdifferential operators
    Tolstonogov A.A.
    Journal of Mathematical Sciences, 2007, 140 (6) : 850 - 872