Imaging and steering an optical wireless nanoantenna link

被引:0
|
作者
Daniel Dregely
Klas Lindfors
Markus Lippitz
Nader Engheta
Michael Totzeck
Harald Giessen
机构
[1] 4th Physics Institute and Research Center SCoPE,Department of Chemistry
[2] University of Stuttgart,Department of Physics
[3] Pfaffenwaldring 57,Department of Electrical and Systems Engineering
[4] Max Planck Institute for Solid State Research,undefined
[5] Heisenbergstrasse 1,undefined
[6] University of Cologne,undefined
[7] Luxemburger Strasse 116,undefined
[8] University of Bayreuth,undefined
[9] Universitaetsstrasse 30,undefined
[10] University of Pennsylvania,undefined
[11] 200 South 33rd Street – ESE 203 Moore,undefined
[12] Corporate Research and Technology,undefined
[13] Carl Zeiss AG,undefined
[14] Carl-Zeiss-Strasse 22,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Optical nanoantennas tailor the transmission and reception of optical signals. Owing to their capacity to control the direction and angular distribution of optical radiation over a broad spectral range, nanoantennas are promising components for optical communication in nanocircuits. Here we measure wireless optical power transfer between plasmonic nanoantennas in the far-field and demonstrate changeable signal routing to different nanoscopic receivers via beamsteering. We image the radiation pattern of single-optical nanoantennas using a photoluminescence technique, which allows mapping of the unperturbed intensity distribution around plasmonic structures. We quantify the distance dependence of the power transmission between transmitter and receiver by deterministically positioning nanoscopic fluorescent receivers around the transmitting nanoantenna. By adjusting the wavefront of the optical field incident on the transmitter, we achieve directional control of the transmitted radiation over a broad range of 29°. This enables wireless power transfer from one transmitter to different receivers.
引用
收藏
相关论文
共 50 条
  • [31] Si Integrated Optical Phased Array for Efficient Beam Steering in Optical Wireless Communications
    Wang, Ke
    Wang, Yang
    Gao, Shitao
    Nirmalathas, Ampalavanapillai
    Lim, Christina
    Sfakfidas, Efstratios
    Alameh, Kamal
    [J]. 2014 GLOBECOM WORKSHOPS (GC WKSHPS), 2014, : 541 - 546
  • [32] Characteristics of an Optical Bowtie Nanoantenna
    Abbas, Ahmed
    El-Said, Mostafa
    Mahmoud, Samir F.
    [J]. PIERS 2013 STOCKHOLM: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2013, : 1708 - 1711
  • [33] Optical microscopy employs 'nanoantenna'
    Gaughan, R
    [J]. PHOTONICS SPECTRA, 2006, 40 (01) : 140 - +
  • [34] Parameter Optimization for an Underwater Optical Wireless Vertical Link Subject to Link Misalignments
    Ijeh, Ikenna Chinazaekpere
    Khalighi, Mohammad Ali
    Hranilovic, Steve
    [J]. IEEE JOURNAL OF OCEANIC ENGINEERING, 2021, 46 (04) : 1424 - 1437
  • [35] Optical Plasmonic Nanoantenna-MWCNT diode Energy Harvester for Solar Powered Wireless Sensors
    Livreri, Patrizia
    Beccaccio, Fabrizio
    [J]. 2021 IEEE SENSORS, 2021,
  • [36] Optical wireless link availability and bit error ratio
    Kvicala, Radek
    [J]. 2007 17TH INTERNATIONAL CONFERENCE RADIOELEKTRONIKA, VOLS 1 AND 2, 2007, : 71 - 75
  • [37] A Link Scheduling Algorithm for Underwater Optical Wireless Networks
    Fan, Zhengxin
    Wang, Lei
    Lu, Bingxian
    Yu, Yongda
    Lin, Chi
    Luo, Zhongxuan
    Qin, Zhenquan
    Zhu, Ming
    [J]. 2020 IFIP NETWORKING CONFERENCE AND WORKSHOPS (NETWORKING), 2020, : 827 - 832
  • [38] Polarization mode dispersion analysis on wireless optical link
    Kora, Ahmed D.
    Moikazi, Axel Clyde Boukono
    Ouattara, Tahirou
    [J]. INTERNATIONAL CONFERENCE ON ADVANCED WIRELESS INFORMATION AND COMMUNICATION TECHNOLOGIES (AWICT 2015), 2015, 73 : 435 - 442
  • [39] The SONAbeam™ 4km optical wireless link
    Carbonneau, TH
    Mecherle, GS
    [J]. OPTICAL WIRELESS COMMUNICATIONS II, 1999, 3850 : 26 - 29
  • [40] Power budget model for indoor wireless optical link
    Wilfert, Otakar
    Prokes, Ales
    Diblik, Jan
    Hrbackova, Petra
    [J]. FREE-SPACE AND ATMOSPHERIC LASER COMMUNICATIONS XI, 2011, 8162