High-temperature ultrafast polariton parametric amplification in semiconductor microcavities

被引:0
|
作者
M. Saba
C. Ciuti
J. Bloch
V. Thierry-Mieg
R. André
Le Si Dang
S. Kundermann
A. Mura
G. Bongiovanni
J. L. Staehli
B. Deveaud
机构
[1] Swiss Federal Institute of Technology Lausanne,Physics Department
[2] PH-Ecublens,Dipartimento di Fisica and Istituto Nazionale di Fisica della Materia
[3] Centre National de la Recherche Scientifique,undefined
[4] Laboratoire de Spectrometrie Physique,undefined
[5] Université J. Fourier-Grenoble,undefined
[6] Università degli Studi di Cagliari,undefined
来源
Nature | 2001年 / 414卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Cavity polaritons, the elementary optical excitations of semiconductor microcavities, may be understood as a superposition of excitons and cavity photons1. Owing to their composite nature, these bosonic particles have a distinct optical response, at the same time very fast and highly nonlinear. Very efficient light amplification due to polariton–polariton parametric scattering has recently been reported in semiconductor microcavities at liquid-helium temperatures2,3,4,5,6,7,8,9,10,11. Here we demonstrate polariton parametric amplification up to 120 K in GaAlAs-based microcavities and up to 220 K in CdTe-based microcavities. We show that the cut-off temperature for the amplification is ultimately determined by the binding energy of the exciton. A 5-µm-thick planar microcavity can amplify a weak light pulse more than 5,000 times. The effective gain coefficient of an equivalent homogeneous medium would be 107 cm-1. The subpicosecond duration and high efficiency of the amplification could be exploited for high-repetition all-optical microscopic switches and amplifiers. 105 polaritons occupy the same quantum state during the amplification, realizing a dynamical condensate of strongly interacting bosons which can be studied at high temperature.
引用
收藏
页码:731 / 735
页数:4
相关论文
共 50 条
  • [21] Stimulated polariton-polariton scattering in semiconductor microcavities
    Kulakovskii, VD
    Krizhanovskii, DN
    Makhonin, MN
    Demenev, AA
    Gippius, NA
    Tikhodeev, SG
    PHYSICS-USPEKHI, 2005, 48 (03) : 312 - 318
  • [23] Polariton-polariton collinear interaction in semiconductor microcavities
    Lebedev, M. V.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2013, 53 : 55 - 58
  • [24] Suppressed polariton scattering in semiconductor microcavities
    Baumberg, JJ
    Armitage, A
    Skolnick, MS
    Roberts, JS
    PHYSICAL REVIEW LETTERS, 1998, 81 (03) : 661 - 664
  • [25] Multipartite polariton entanglement in semiconductor microcavities
    Liew, T. C. H.
    Savona, V.
    PHYSICAL REVIEW A, 2011, 84 (03):
  • [26] Evidence of polariton stimulation in semiconductor microcavities
    Boeuf, F
    André, R
    Romestain, R
    Dang, LS
    Peronne, E
    Lampin, JF
    Hulin, D
    Alexandrou, A
    PHYSICAL REVIEW B, 2000, 62 (04): : R2279 - R2282
  • [27] Semiconductor microcavities: towards polariton lasers
    Kavokin, A
    Malpuech, G
    Gil, B
    MRS INTERNET JOURNAL OF NITRIDE SEMICONDUCTOR RESEARCH, 2003, 8 (03):
  • [28] Polariton quantum boxes in semiconductor microcavities
    El Daïf, O
    Baas, A
    Guillet, T
    Brantut, JP
    Kaitouni, RI
    Staehli, JL
    Morier-Genoud, F
    Deveaud, B
    APPLIED PHYSICS LETTERS, 2006, 88 (06)
  • [29] Polariton resonant scattering in semiconductor microcavities
    Litinskaia, ML
    La Rocca, GC
    PHYSICS LETTERS A, 1999, 264 (2-3) : 232 - 241
  • [30] Vectorial polariton solitons in semiconductor microcavities
    Zhang, W. L.
    Yu, S. F.
    OPTICS EXPRESS, 2010, 18 (20): : 21219 - 21224