We study a two-stage all-pay auction with two identical prizes. In each stage, the players compete for one prize. Each player may win either one or two prizes. We analyze the unique subgame-perfect equilibrium of our model with two players where each player’s marginal values for the prizes are decreasing, constant, or increasing. We also analyze an equilibrium of the model with more than two players where each player’s marginal values for the prizes are nonincreasing.