Actin nano-architecture of phagocytic podosomes

被引:0
|
作者
J. Cody Herron
Shiqiong Hu
Takashi Watanabe
Ana T. Nogueira
Bei Liu
Megan E. Kern
Jesse Aaron
Aaron Taylor
Michael Pablo
Teng-Leong Chew
Timothy C. Elston
Klaus M. Hahn
机构
[1] University of North Carolina at Chapel Hill,Curriculum in Bioinformatics and Computational Biology
[2] University of North Carolina at Chapel Hill,Computational Medicine Program
[3] University of North Carolina at Chapel Hill,Department of Pharmacology, School of Medicine
[4] University of North Carolina at Chapel Hill,Department of Physics and Astronomy
[5] Howard Hughes Medical Institute Janelia Research Campus,Advanced Imaging Center
[6] University of North Carolina at Chapel Hill,Department of Chemistry
[7] University of North Carolina at Chapel Hill,Program in Molecular and Cellular Biophysics
[8] Fujita Health University,Division of Gene Regulation, Cancer Center
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Podosomes are actin-enriched adhesion structures important for multiple cellular processes, including migration, bone remodeling, and phagocytosis. Here, we characterize the structure and organization of phagocytic podosomes using interferometric photoactivated localization microscopy, a super-resolution microscopy technique capable of 15–20 nm resolution, together with structured illumination microscopy and localization-based super-resolution microscopy. Phagocytic podosomes are observed during frustrated phagocytosis, a model in which cells attempt to engulf micropatterned IgG antibodies. For circular patterns, this results in regular arrays of podosomes with well-defined geometry. Using persistent homology, we develop a pipeline for semi-automatic identification and measurement of podosome features. These studies reveal an hourglass shape of the podosome actin core, a protruding knob at the bottom of the core, and two actin networks extending from the core. Additionally, the distributions of paxillin, talin, myosin II, α-actinin, cortactin, and microtubules relative to actin are characterized.
引用
收藏
相关论文
共 50 条
  • [31] Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils
    Matthieu Bourdon
    Jan J. Lyczakowski
    Rosalie Cresswell
    Sam Amsbury
    Francisco Vilaplana
    Marie-Joo Le Guen
    Nadège Follain
    Raymond Wightman
    Chang Su
    Fulgencio Alatorre-Cobos
    Maximilian Ritter
    Aleksandra Liszka
    Oliver M. Terrett
    Shri Ram Yadav
    Anne Vatén
    Kaisa Nieminen
    Gugan Eswaran
    Juan Alonso-Serra
    Karin H. Müller
    Dinu Iuga
    Pal Csaba Miskolczi
    Lothar Kalmbach
    Sofia Otero
    Ari Pekka Mähönen
    Rishikesh Bhalerao
    Vincent Bulone
    Shawn D. Mansfield
    Stefan Hill
    Ingo Burgert
    Johnny Beaugrand
    Yoselin Benitez-Alfonso
    Ray Dupree
    Paul Dupree
    Ykä Helariutta
    [J]. Nature Plants, 2023, 9 : 1530 - 1546
  • [32] Robust Surface Nano-Architecture by Alkali-Carboxylate Ionic Bonding
    Skomski, Daniel
    Abb, Sabine
    Tait, Steven L.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (34) : 14165 - 14171
  • [33] Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils
    Bourdon, Matthieu
    Lyczakowski, Jan J.
    Cresswell, Rosalie
    Amsbury, Sam
    Vilaplana, Francisco
    Le Guen, Marie-Joo
    Follain, Nadege
    Wightman, Raymond
    Su, Chang
    Alatorre-Cobos, Fulgencio
    Ritter, Maximilian
    Liszka, Aleksandra
    Terrett, Oliver M.
    Yadav, Shri Ram
    Vaten, Anne
    Nieminen, Kaisa
    Eswaran, Gugan
    Alonso-Serra, Juan
    Mueller, Karin H.
    Iuga, Dinu
    Miskolczi, Pal Csaba
    Kalmbach, Lothar
    Otero, Sofia
    Mahonen, Ari Pekka
    Bhalerao, Rishikesh
    Bulone, Vincent
    Mansfield, Shawn D.
    Hill, Stefan
    Burgert, Ingo
    Beaugrand, Johnny
    Benitez-Alfonso, Yoselin
    Dupree, Ray
    Dupree, Paul
    Helariutta, Yka
    [J]. NATURE PLANTS, 2023, 9 (09) : 1530 - +
  • [34] How tetraspanins shape endothelial and leukocyte nano-architecture during inflammation
    Franz, Jonas
    Tarantola, Marco
    Riethmueller, Christoph
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 2017, 45 : 999 - 1006
  • [35] Amorphisation and recrystallisation study of lithium intercalation into TiO2 nano-architecture
    Matshaba, M. G.
    Sayle, D. C.
    Sayle, T. X. T.
    Ngoepe, P. E.
    [J]. 2016 INTERNATIONAL CONFERENCE ON DEFECTS IN INSULATING MATERIALS (ICDIM 2016), 2017, 169
  • [36] Nano-architecture based photoelectrochemical water oxidation efficiency enhancement by CdS photoanodes
    Pareek, Alka
    Kim, Hyun Gyu
    Paik, Pradip
    Joardar, Joydip
    Borse, Pramod H.
    [J]. MATERIALS RESEARCH EXPRESS, 2017, 4 (02):
  • [37] QUANTITATIVE DETERMINATION OF HYDROQUINONE VIA ELECTROCHEMICAL METHODS AT A NANO-ARCHITECTURE PLATINUM ELECTRODE
    Al-Owais, Ahmed A.
    El-Hallag, Ibrahim S.
    El-Mossalamy, Elsayed H.
    [J]. MACEDONIAN JOURNAL OF CHEMISTRY AND CHEMICAL ENGINEERING, 2023, 42 (01) : 115 - 126
  • [38] Tailoring the chemistry and the nano-architecture of organic thin films using cold plasma processes
    Thiry, Damien
    Chauvin, Adrien
    El Mel, Abdel-Aziz
    Cardinaud, Christophe
    Hamon, Jonathan
    Gautron, Eric
    Stephant, Nicolas
    Granier, Agnes
    Tessier, Pierre-Yves
    [J]. PLASMA PROCESSES AND POLYMERS, 2017, 14 (11)
  • [39] Tracking single molecular diffusion on glass substrate modified with periodic Ag nano-architecture
    Takimoto, Baku
    Nabika, Hideki
    Murakoshi, Kei
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (07): : 6039 - 6042
  • [40] BaSIS Microscopy: Label-free Imaging of the Native, Living Cellular Nano-architecture
    Almassalha, Luay Matthew
    Bauer, Greta
    Chandler, John
    Gladstein, Scott
    Cherkezyan, Lusik
    Stypula-Cyrus, Yolanda
    Weinberg, Sam
    Zhang, Di
    Ruhoff, Peder Thusgaard
    Roy, Hemant
    Subramanian, Hariharan
    Chandel, Navdeep
    Szleifer, Igal
    Backman, Vadim
    [J]. FASEB JOURNAL, 2016, 30