Addendum To: Almost Ricci solitons and K-contact geometry

被引:0
|
作者
Ramesh Sharma
机构
[1] University Of New Haven,
来源
Journal of Geometry | 2022年 / 113卷
关键词
Ricci soliton; contact metric structure; -contact; Einstein Sasakian; infinitesimal automorphism; 53C25; 53C44; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
We improve the previous result “A complete Ricci soliton whose metric g is K-contact and the soliton vector field X is strictly contact, is compact Sasakian Einstein” and show that, if a complete Ricci soliton (M, g, X) whose metric g is a contact metric and the soliton vector field X is strictly contact, then X is an infinitesimal automorphism and g is Einstein. Finally, for a Ricci soliton with X as the Reeb vector field, we show that (M, g) is compact Einstein and and Sasakian.
引用
收藏
相关论文
共 50 条
  • [41] Geometry of Ricci Solitons*
    Huai-Dong Cao
    Chinese Annals of Mathematics, Series B, 2006, 27 : 121 - 142
  • [42] Back to Almost Ricci Solitons
    Rovenski, Vladimir
    Stepanov, Sergey
    Tsyganok, Irina
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 208 - 214
  • [43] HOMOGENEOUS RICCI ALMOST SOLITONS
    Calvino-Louzao, Esteban
    Fernandez-Lopez, Manuel
    Garcia-Rio, Eduardo
    Vazquez-Lorenzo, Ramon
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 220 (02) : 531 - 546
  • [44] A note on almost Ricci solitons
    Sharief Deshmukh
    Hana Al-Sodais
    Analysis and Mathematical Physics, 2020, 10
  • [45] A note on almost Ricci solitons
    Deshmukh, Sharief
    Al-Sodais, Hana
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [46] Homogeneous Ricci almost solitons
    Esteban Calviño-Louzao
    Manuel Fernández-López
    Eduardo García-Río
    Ramón Vázquez-Lorenzo
    Israel Journal of Mathematics, 2017, 220 : 531 - 546
  • [47] η-Ricci Solitons on N(k)-Contact Metric Manifolds
    Sarkar, Avijit
    Sardar, Arpan
    FILOMAT, 2021, 35 (11) : 3879 - 3889
  • [48] RICCI SOLITONS AND RICCI ALMOST SOLITONS ON PARA-KENMOTSU MANIFOLD
    Patra, Dhriti Sundar
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (05) : 1315 - 1325
  • [49] η-Ricci solitons and almost η-Ricci solitons on para-Sasakian manifolds
    Naik, Devaraja Mallesha
    Venkatesha, V.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (09)
  • [50] CERTAIN RESULTS ON η-RICCI SOLITIONS AND ALMOST η-RICCI SOLITONS
    Dey, Santu
    Azami, Shahroud
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (02): : 359 - 376