Forbidden Subgraphs and Weak Locally Connected Graphs

被引:0
|
作者
Xia Liu
Houyuan Lin
Liming Xiong
机构
[1] Beijing Institute of Technology,School of Mathematics and Statistics and Beijing Key Laboratory on MCAACI
[2] Shandong University of Finance and Economics,School of Mathematics and Quantitative Economics
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Forbidden subgraph; Supereulerian; Hamiltonian; 2-factor; Collapsible;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is called H-free if it has no induced subgraph isomorphic to H. A graph is called Ni\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^i$$\end{document}-locally connected if G[{x∈V(G):1≤dG(w,x)≤i}]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G[\{ x\in V(G): 1\le d_G(w, x)\le i\}]$$\end{document} is connected and N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_2$$\end{document}-locally connected if G[{uv:{uw,vw}⊆E(G)}]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G[\{uv: \{uw, vw\}\subseteq E(G)\}]$$\end{document} is connected for every vertex w of G, respectively. In this paper, we prove the following.Every 2-connected P7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_7$$\end{document}-free graph of minimum degree at least three other than the Petersen graph has a spanning Eulerian subgraph. This implies that every H-free 3-connected graph (or connected N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^4$$\end{document}-locally connected graph of minimum degree at least three) other than the Petersen graph is supereulerian if and only if H is an induced subgraph of P7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_7$$\end{document}, where Pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_i$$\end{document} is a path of i vertices.Every 2-edge-connected H-free graph other than {K2,2k+1:kis a positive integer}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{K_{2, 2k+1}:k ~\text {is a positive integer}\}$$\end{document} is supereulerian if and only if H is an induced subgraph of P4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_4$$\end{document}.If every connected H-free N3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^3$$\end{document}-locally connected graph other than the Petersen graph of minimum degree at least three is supereulerian, then H is an induced subgraph of P7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_7$$\end{document} or T2,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{2, 2, 3}$$\end{document}, i.e., the graph obtained by identifying exactly one end vertex of P3,P3,P4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_3, P_3, P_4$$\end{document}, respectively.If every 3-connected H-free N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_2$$\end{document}-locally connected graph is hamiltonian, then H is an induced subgraph of K1,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,4}$$\end{document}. We present an algorithm to find a collapsible subgraph of a graph with girth 4 whose idea is used to prove our first conclusion above. Finally, we propose that the reverse of the last two items would be true.
引用
收藏
页码:1671 / 1690
页数:19
相关论文
共 50 条
  • [31] FORBIDDEN INDUCED SUBGRAPHS FOR LINE GRAPHS
    SOLTES, L
    DISCRETE MATHEMATICS, 1994, 132 (1-3) : 391 - 394
  • [32] On Planar Intersection Graphs with Forbidden Subgraphs
    Pach, Janos
    Sharir, Micha
    JOURNAL OF GRAPH THEORY, 2008, 59 (03) : 205 - 214
  • [33] The number of graphs without forbidden subgraphs
    Balogh, J
    Bollobás, B
    Simonovits, M
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 91 (01) : 1 - 24
  • [34] FORBIDDEN SUBGRAPHS AND HAMILTONIAN PROPERTIES OF GRAPHS
    GOULD, RJ
    JACOBSON, MS
    DISCRETE MATHEMATICS, 1982, 42 (2-3) : 189 - 196
  • [35] Large homogeneous subgraphs in bipartite graphs with forbidden induced subgraphs
    Axenovich, Maria
    Tompkins, Casey
    Weber, Lea
    JOURNAL OF GRAPH THEORY, 2021, 97 (01) : 34 - 46
  • [36] On the number of connected subgraphs of graphs
    Dinesh Pandey
    Kamal Lochan Patra
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 571 - 583
  • [37] On the number of connected subgraphs of graphs
    Pandey, Dinesh
    Patra, Kamal Lochan
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (02): : 571 - 583
  • [38] FORBIDDEN RAINBOW SUBGRAPHS THAT FORCE LARGE HIGHLY CONNECTED MONOCHROMATIC SUBGRAPHS
    Fujita, Shinya
    Magnant, Colton
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (03) : 1625 - 1637
  • [39] On Forbidden Induced Subgraphs for Unit Disk Graphs
    Aistis Atminas
    Viktor Zamaraev
    Discrete & Computational Geometry, 2018, 60 : 57 - 97
  • [40] Maximising the number of cycles in graphs with forbidden subgraphs
    Morrison, Natasha
    Roberts, Alexander
    Scott, Alex
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 147 : 201 - 237