Forbidden Subgraphs and Weak Locally Connected Graphs

被引:0
|
作者
Xia Liu
Houyuan Lin
Liming Xiong
机构
[1] Beijing Institute of Technology,School of Mathematics and Statistics and Beijing Key Laboratory on MCAACI
[2] Shandong University of Finance and Economics,School of Mathematics and Quantitative Economics
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Forbidden subgraph; Supereulerian; Hamiltonian; 2-factor; Collapsible;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is called H-free if it has no induced subgraph isomorphic to H. A graph is called Ni\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^i$$\end{document}-locally connected if G[{x∈V(G):1≤dG(w,x)≤i}]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G[\{ x\in V(G): 1\le d_G(w, x)\le i\}]$$\end{document} is connected and N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_2$$\end{document}-locally connected if G[{uv:{uw,vw}⊆E(G)}]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G[\{uv: \{uw, vw\}\subseteq E(G)\}]$$\end{document} is connected for every vertex w of G, respectively. In this paper, we prove the following.Every 2-connected P7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_7$$\end{document}-free graph of minimum degree at least three other than the Petersen graph has a spanning Eulerian subgraph. This implies that every H-free 3-connected graph (or connected N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^4$$\end{document}-locally connected graph of minimum degree at least three) other than the Petersen graph is supereulerian if and only if H is an induced subgraph of P7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_7$$\end{document}, where Pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_i$$\end{document} is a path of i vertices.Every 2-edge-connected H-free graph other than {K2,2k+1:kis a positive integer}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{K_{2, 2k+1}:k ~\text {is a positive integer}\}$$\end{document} is supereulerian if and only if H is an induced subgraph of P4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_4$$\end{document}.If every connected H-free N3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^3$$\end{document}-locally connected graph other than the Petersen graph of minimum degree at least three is supereulerian, then H is an induced subgraph of P7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_7$$\end{document} or T2,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{2, 2, 3}$$\end{document}, i.e., the graph obtained by identifying exactly one end vertex of P3,P3,P4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_3, P_3, P_4$$\end{document}, respectively.If every 3-connected H-free N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_2$$\end{document}-locally connected graph is hamiltonian, then H is an induced subgraph of K1,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,4}$$\end{document}. We present an algorithm to find a collapsible subgraph of a graph with girth 4 whose idea is used to prove our first conclusion above. Finally, we propose that the reverse of the last two items would be true.
引用
收藏
页码:1671 / 1690
页数:19
相关论文
共 50 条
  • [1] Forbidden Subgraphs and Weak Locally Connected Graphs
    Liu, Xia
    Lin, Houyuan
    Xiong, Liming
    [J]. GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1671 - 1690
  • [2] DEFICIENCY AND FORBIDDEN SUBGRAPHS OF CONNECTED, LOCALLY-CONNECTED GRAPHS
    Li, Xihe
    Wang, Ligong
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (01) : 195 - 208
  • [3] Forbidden subgraphs in connected graphs
    Ravelomanana, V
    Thimonier, LS
    [J]. THEORETICAL COMPUTER SCIENCE, 2004, 314 (1-2) : 121 - 171
  • [4] Hamiltonicity and forbidden subgraphs in 4-connected graphs
    Pfender, F
    [J]. JOURNAL OF GRAPH THEORY, 2005, 49 (04) : 262 - 272
  • [5] Toughness, Forbidden Subgraphs, and Hamilton-Connected Graphs
    Zheng, Wei
    Broersma, Hajo
    Wang, Ligong
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (01) : 187 - 196
  • [6] Pairs of forbidden subgraphs and 2-connected supereulerian graphs
    Cada, Roman
    Ozeki, Kenta
    Xiong, Liming
    Yoshimoto, Kiyoshi
    [J]. DISCRETE MATHEMATICS, 2018, 341 (06) : 1696 - 1707
  • [7] Forbidden subgraphs of graphs uniquely Hamiltonian-connected from a vertex
    Hendry, GRT
    Knickerbocker, CJ
    Frazer, P
    Sheard, M
    [J]. DISCRETE MATHEMATICS, 1998, 187 (1-3) : 281 - 290
  • [8] Contractible Edges in k-Connected Graphs with Some Forbidden Subgraphs
    Yingqiu Yang
    Liang Sun
    [J]. Graphs and Combinatorics, 2014, 30 : 1607 - 1614
  • [9] Forbidden set of induced subgraphs for 2-connected supereulerian graphs
    Wang, Shipeng
    Xiong, Liming
    [J]. DISCRETE MATHEMATICS, 2017, 340 (12) : 2792 - 2797
  • [10] Contractible Edges in k-Connected Graphs with Some Forbidden Subgraphs
    Yang, Yingqiu
    Sun, Liang
    [J]. GRAPHS AND COMBINATORICS, 2014, 30 (06) : 1607 - 1614