De-anonymization of Heterogeneous Random Graphs in Quasilinear Time

被引:0
|
作者
Karl Bringmann
Tobias Friedrich
Anton Krohmer
机构
[1] Max Planck Institute for Informatics,
[2] Hasso Plattner Institute,undefined
来源
Algorithmica | 2018年 / 80卷
关键词
Social networks; Locality-sensitive hashing; Network privacy;
D O I
暂无
中图分类号
学科分类号
摘要
There are hundreds of online social networks with altogether billions of users. Many such networks publicly release structural information, with all personal information removed. Empirical studies have shown, however, that this provides a false sense of privacy—it is possible to identify almost all users that appear in two such anonymized network as long as a few initial mappings are known. We analyze this problem theoretically by reconciling two versions of an artificial power-law network arising from independent subsampling of vertices and edges. We present a new algorithm that identifies most vertices and makes no wrong identifications with high probability. The number of vertices matched is shown to be asymptotically optimal. For an n-vertex graph, our algorithm uses nε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^\varepsilon $$\end{document} seed nodes (for an arbitrarily small ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}) and runs in quasilinear time. This improves previous theoretical results which need Θ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta (n)$$\end{document} seed nodes and have runtimes of order n1+Ω(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{1+\Omega (1)}$$\end{document}. Additionally, the applicability of our algorithm is studied experimentally on different networks.
引用
收藏
页码:3397 / 3427
页数:30
相关论文
共 50 条
  • [21] Darknet and Bitcoin De-anonymization: Emerging Development
    Han, Wenlin
    Viet Duong
    Long Nguyen
    Mier, Caesar
    2020 ZOOMING INNOVATION IN CONSUMER TECHNOLOGIES CONFERENCE (ZINC), 2020, : 222 - 226
  • [22] Structural Data De-Anonymization: Theory and Practice
    Ji, Shouling
    Li, Weiqing
    Srivatsa, Mudhakar
    Beyah, Raheem
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2016, 24 (06) : 3523 - 3536
  • [23] A De-anonymization Attack against Downloaders in Freenet
    Xu, Yonghuan
    Yang, Ming
    Ling, Zhen
    Liu, Zixia
    Gu, Xiaodan
    Luo, Lan
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2024, : 201 - 210
  • [24] Quantification of De-anonymization Risks in Social Networks
    Lee, Wei-Han
    Liu, Changchang
    Ji, Shouling
    Mittal, Prateek
    Lee, Ruby
    ICISSP: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2017, : 126 - 135
  • [25] Anonymization and De-Anonymization of Mobility Trajectories: Dissecting the Gaps Between Theory and Practice
    Wang, Huandong
    Li, Yong
    Gao, Chen
    Wang, Gang
    Tao, Xiaoming
    Jin, Depeng
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2021, 20 (03) : 796 - 815
  • [26] Neural-based inexact graph de-anonymization
    Lu, Guangxi
    Li, Kaiyang
    Wang, Xiaotong
    Liu, Ziyue
    Cai, Zhipeng
    Li, Wei
    HIGH-CONFIDENCE COMPUTING, 2024, 4 (01):
  • [27] SA Framework based De-anonymization of Social Networks
    Jiang, Honglu
    Yu, Jiguo
    Hu, Chunqiang
    Zhang, Cheng
    Cheng, Xiuzhen
    2017 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS, 2018, 129 : 358 - 363
  • [28] Fast De-anonymization of Social Networks with Structural Information
    Yingxia Shao
    Jialin Liu
    Shuyang Shi
    Yuemei Zhang
    Bin Cui
    Data Science and Engineering, 2019, 4 : 76 - 92
  • [29] Search Rank Fraud De-Anonymization in Online Systems
    Rahman, Mizanur
    Carbunar, Bogdan
    Hernandez, Nestor
    Chau, Duen Horng
    HT'18: PROCEEDINGS OF THE 29TH ACM CONFERENCE ON HYPERTEXT AND SOCIAL MEDIA, 2018, : 174 - 182
  • [30] Collective De-Anonymization of Social Networks With Optional Seeds
    Zhang, Jiapeng
    Fu, Luoyi
    Long, Huan
    Meng, Guiae
    Tang, Feilong
    Wang, Xinbing
    Chen, Guihai
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (12) : 4218 - 4232