De-anonymization of Heterogeneous Random Graphs in Quasilinear Time

被引:0
|
作者
Karl Bringmann
Tobias Friedrich
Anton Krohmer
机构
[1] Max Planck Institute for Informatics,
[2] Hasso Plattner Institute,undefined
来源
Algorithmica | 2018年 / 80卷
关键词
Social networks; Locality-sensitive hashing; Network privacy;
D O I
暂无
中图分类号
学科分类号
摘要
There are hundreds of online social networks with altogether billions of users. Many such networks publicly release structural information, with all personal information removed. Empirical studies have shown, however, that this provides a false sense of privacy—it is possible to identify almost all users that appear in two such anonymized network as long as a few initial mappings are known. We analyze this problem theoretically by reconciling two versions of an artificial power-law network arising from independent subsampling of vertices and edges. We present a new algorithm that identifies most vertices and makes no wrong identifications with high probability. The number of vertices matched is shown to be asymptotically optimal. For an n-vertex graph, our algorithm uses nε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^\varepsilon $$\end{document} seed nodes (for an arbitrarily small ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}) and runs in quasilinear time. This improves previous theoretical results which need Θ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta (n)$$\end{document} seed nodes and have runtimes of order n1+Ω(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{1+\Omega (1)}$$\end{document}. Additionally, the applicability of our algorithm is studied experimentally on different networks.
引用
收藏
页码:3397 / 3427
页数:30
相关论文
共 50 条
  • [1] De-anonymization of Heterogeneous Random Graphs in Quasilinear Time
    Bringmann, Karl
    Friedrich, Tobias
    Krohmer, Anton
    ALGORITHMS - ESA 2014, 2014, 8737 : 197 - 208
  • [2] De-anonymization of Heterogeneous Random Graphs in Quasilinear Time
    Bringmann, Karl
    Friedrich, Tobias
    Krohmer, Anton
    ALGORITHMICA, 2018, 80 (11) : 3397 - 3427
  • [3] Optimal De-Anonymization in Random Graphs with Community Structure
    Onaran, Efe
    Garg, Siddharth
    Erkip, Elza
    2016 50TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2016, : 709 - 713
  • [4] Optimal De-Anonymization in Random Graphs with Community Structure
    Onaran, Efe
    Garg, Siddharth
    Erkip, Elza
    2016 IEEE 37TH SARNOFF SYMPOSIUM, 2016,
  • [5] Evaluating Privacy Metrics for Graph Anonymization and De-anonymization
    Zhao, Yuchen
    Wagner, Isabel
    PROCEEDINGS OF THE 2018 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (ASIACCS'18), 2018, : 817 - 819
  • [6] Privacy Leakage via De-Anonymization and Aggregation in Heterogeneous Social Networks
    Li, Huaxin
    Chen, Qingrong
    Zhu, Haojin
    Ma, Di
    Wen, Hong
    Shen, Xuemin
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2020, 17 (02) : 350 - 362
  • [7] De-anonymization attack on geolocated data
    Gambs, Sebastien
    Killijian, Marc-Olivier
    Cortez, Miguel Niunez del Prado
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2014, 80 (08) : 1597 - 1614
  • [8] On De-anonymization of Single Tweet Messages
    Le, Hoi
    Safavi-Naini, Reihaneh
    IWSPA '18: PROCEEDINGS OF THE FOURTH ACM INTERNATIONAL WORKSHOP ON SECURITY AND PRIVACY ANALYTICS, 2018, : 8 - 14
  • [9] De-anonymization Attacks on Neuroimaging Datasets
    Ravindra, Vikram
    Grama, Ananth
    SIGMOD '21: PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, : 2394 - 2398
  • [10] De-Anonymization of dynamic social networks
    Ding, X., 1600, Asian Network for Scientific Information (12):