Multivalued Exponentiation Analysis. Part I: Maclaurin Exponentials

被引:0
|
作者
Alexandre Cabot
Alberto Seeger
机构
[1] Université de Limoges,Laboratoire LACO
[2] Université d’Avignon,Departement de Mathématiques
来源
Set-Valued Analysis | 2006年 / 14卷
关键词
exponentiation; multivalued map; differential inclusion; power series; Painlevé–Kuratowski convergence; 26E25; 33B10; 34A60;
D O I
暂无
中图分类号
学科分类号
摘要
The exponentiation theory of linear continuous operators on Banach spaces can be extended in manifold ways to a multivalued context. In this paper we explore the Maclaurin exponentiation technique which is based on the use of a suitable power series. More precisely, we discuss about the existence and characterization of the Painlevé–Kuratowski limit \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[{\rm Exp}\;F](x)= \lim_{n\to\infty}\sum_{p=0}^n \frac{1}{p!}F^p(x)$$\end{document}under different assumptions on the multivalued map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F\!:X\rightrightarrows X$\end{document}. In Part II of this work we study the so-called recursive exponentiation method which uses as ingredient the set of trajectories associated to a discrete time evolution system governed by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F$\end{document}.
引用
收藏
页码:347 / 379
页数:32
相关论文
共 50 条
  • [21] Lyapunov exponents for products of matrices and multifractal analysis. Part I: Positive matrices
    Feng, DJ
    ISRAEL JOURNAL OF MATHEMATICS, 2003, 138 (1) : 353 - 376
  • [22] Penalty method for variational inequalities with multivalued mappings. Part I
    M. Z. Zgurovskii
    V. S. Mel’nik
    Cybernetics and Systems Analysis, 2000, 36 : 520 - 530
  • [23] Biomonitoring: An integral part of exposure analysis.
    Needham, LL
    Barr, D
    Patterson, DG
    Pirkle, JL
    NEUROTOXICOLOGY, 2004, 25 (04) : 666 - 666
  • [24] Cone-beam computed tomography transverse analysis. Part I: Normative data
    Miner, R. Matthew
    Al Qabandi, Salem
    Rigali, Paul H.
    Will, Leslie A.
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2012, 142 (03) : 300 - 307
  • [25] CELL MAPPING METHOD FOR NONLINEAR DETERMINISTIC AND STOCHASTIC SYSTEMS - PART I: THE METHOD OF ANALYSIS.
    Hsu, C.S.
    Chiu, H.M.
    1600, (53):
  • [26] Kraft white and green liquor composition analysis. Part I: Discrete sample analyzer
    Paulonis, M.A.
    Krishnagopalan, G.A.
    Journal of Pulp and Paper Science, 1994, 20 (09):
  • [27] THERMAL STRESS FRACTURE OF REFRACTORY LINING COMPONENTS: PART I. THERMOELASTIC ANALYSIS.
    Bradley, F.
    Chaklader, A.C.D.
    Mitchell, A.
    Metallurgical transactions. B, Process metallurgy, 1987, 18 B (02): : 355 - 363
  • [28] Informative-measuring system in atomic-emission spectral analysis. Part I
    Nikitenko, B.F.
    Kazakov, N.S.
    Defektoskopiya, 1998, (10): : 64 - 88
  • [29] Optimal Selection of Time Resolution for Batch Data Analysis. Part I: Predictive Modeling
    Rato, Tiago J.
    Reis, Marco S.
    AICHE JOURNAL, 2018, 64 (11) : 3923 - 3933
  • [30] Penalty method for variational inequalities with multivalued mappings. Part I
    Zgurovskii, MZ
    Mel'nik, VS
    CYBERNETICS AND SYSTEMS ANALYSIS, 2000, 36 (04) : 520 - 530