Multivalued Exponentiation Analysis. Part I: Maclaurin Exponentials

被引:0
|
作者
Alexandre Cabot
Alberto Seeger
机构
[1] Université de Limoges,Laboratoire LACO
[2] Université d’Avignon,Departement de Mathématiques
来源
Set-Valued Analysis | 2006年 / 14卷
关键词
exponentiation; multivalued map; differential inclusion; power series; Painlevé–Kuratowski convergence; 26E25; 33B10; 34A60;
D O I
暂无
中图分类号
学科分类号
摘要
The exponentiation theory of linear continuous operators on Banach spaces can be extended in manifold ways to a multivalued context. In this paper we explore the Maclaurin exponentiation technique which is based on the use of a suitable power series. More precisely, we discuss about the existence and characterization of the Painlevé–Kuratowski limit \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[{\rm Exp}\;F](x)= \lim_{n\to\infty}\sum_{p=0}^n \frac{1}{p!}F^p(x)$$\end{document}under different assumptions on the multivalued map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F\!:X\rightrightarrows X$\end{document}. In Part II of this work we study the so-called recursive exponentiation method which uses as ingredient the set of trajectories associated to a discrete time evolution system governed by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F$\end{document}.
引用
收藏
页码:347 / 379
页数:32
相关论文
共 50 条
  • [1] Multivalued exponentiation analysis. Part I: Maclaurin exponentials
    Cabot, Alexandre
    Seeger, Alberto
    SET-VALUED ANALYSIS, 2006, 14 (04): : 347 - 379
  • [2] Multivalued Exponentiation Analysis. Part III: Forward Exponentials
    Cabot, Alexandre
    Seeger, Alberto
    SET-VALUED AND VARIATIONAL ANALYSIS, 2014, 22 (03) : 617 - 638
  • [3] Multivalued Exponentiation Analysis. Part III: Forward Exponentials
    Alexandre Cabot
    Alberto Seeger
    Set-Valued and Variational Analysis, 2014, 22 : 617 - 638
  • [4] Multivalued exponentiation analysis - Part II: Recursive exponentials
    Cabot, Alexandre
    Seeger, Alberto
    SET-VALUED ANALYSIS, 2006, 14 (04): : 381 - 411
  • [5] Multivalued Exponentiation AnalysisPart II: Recursive Exponentials
    Alexandre Cabot
    Alberto Seeger
    Set-Valued Analysis, 2006, 14 : 381 - 411
  • [6] Validation in pharmaceutical analysis. Part I: An integrated approach
    Ermer, J
    JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2001, 24 (5-6) : 755 - 767
  • [7] MICROBLOGGING IN DENMARK AND POLAND - A CONTRASTIVE ANALYSIS. PART I
    Smulczynski, Michal
    SKANDINAVSKAYA FILOLOGIYA, 2021, 19 (01): : 101 - 125
  • [8] On ellipsoidal techniques for reachability analysis. Part I: External approximations
    Kurzhanski, AB
    Varaiya, P
    OPTIMIZATION METHODS & SOFTWARE, 2002, 17 (02): : 177 - 206
  • [9] Automatic design of reactive mufflers: Performance analysis. Part I
    Rastelli, Victor
    Rastelli, Victoria H.
    Filippo, Jenny Montbrun-Di
    Montbrun, Nila
    Sánchez, Yamilet
    Revista de la Facultad de Ingenieria, 2008, 23 (02): : 95 - 101
  • [10] MULTIVALUED DIFFERENTIAL CALCULUS AND ITS APPLICATION IN FAULT ANALYSIS.
    Tapia, Moiez A.
    Guima, Tayeb A.
    1600, (63):