A result on the sum of element orders of a finite group

被引:0
|
作者
Afsane Bahri
Behrooz Khosravi
Zeinab Akhlaghi
机构
[1] Amirkabir University of Technology (Tehran Polytechnic),Department of Pure Mathematics Faculty of Mathematics and Computer Science
来源
Archiv der Mathematik | 2020年 / 114卷
关键词
Finite group; Order; Sum of element orders; Solvable group; 20D60; 20F16;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite group and ψ(G)=∑g∈Go(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (G)=\sum _{g\in {G}}{o(g)}$$\end{document}. There are some results about the relation between ψ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (G)$$\end{document} and the structure of G. For instance, it is proved that if G is a group of order n and ψ(G)>2111617ψ(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (G)>\dfrac{211}{1617}\psi (C_n)$$\end{document}, then G is solvable. Herzog et al. in (J Algebra 511:215–226, 2018) put forward the following conjecture:
引用
收藏
页码:3 / 12
页数:9
相关论文
共 50 条
  • [21] Detecting structural properties of finite groups by the sum of element orders
    Marius Tărnăuceanu
    Israel Journal of Mathematics, 2020, 238 : 629 - 637
  • [22] Second Maximum Sum of Element Orders of Finite Nilpotent Groups
    Amiri, Seyyed Majid Jafarian
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (06) : 2055 - 2059
  • [23] A Recursive Formula for the Sum of Element Orders of Finite Abelian Groups
    Chew, C. Y.
    Chin, A. Y. M.
    Lim, C. S.
    RESULTS IN MATHEMATICS, 2017, 72 (04) : 1897 - 1905
  • [24] The number of composite numbers in the set of element orders of a finite group
    Deng, HW
    JOURNAL OF GROUP THEORY, 1998, 1 (04) : 339 - 355
  • [25] ON THE CHARACTERIZABILITY OF SOME FAMILIES OF FINITE GROUP OF LIE TYPE BY ORDERS AND VANISHING ELEMENT ORDERS
    Pasdar, Majedeh
    Iranmanesh, Ali
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (03): : 573 - 582
  • [26] An answer to a conjecture on the sum of element orders
    Azad, Morteza Baniasad
    Khosravi, Behrooz
    Jafarpour, Morteza
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (04)
  • [27] Subgroups with a small sum of element orders
    Mihai-Silviu Lazorec
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [29] On the Sum of Orders of Elements in Finite Groups
    Herzog M.
    Longobardi P.
    Maj M.
    Journal of Mathematical Sciences, 2023, 275 (6) : 722 - 727
  • [30] Finite Groups and the Sum of Orders of Their Subgroups
    Lu, Jiakuan
    Kuang, Meiqun
    Wu, Kaixun
    Zhang, Boru
    JOURNAL OF MATHEMATICAL STUDY, 2023, 56 (04) : 340 - 344