A result on the sum of element orders of a finite group

被引:0
|
作者
Afsane Bahri
Behrooz Khosravi
Zeinab Akhlaghi
机构
[1] Amirkabir University of Technology (Tehran Polytechnic),Department of Pure Mathematics Faculty of Mathematics and Computer Science
来源
Archiv der Mathematik | 2020年 / 114卷
关键词
Finite group; Order; Sum of element orders; Solvable group; 20D60; 20F16;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite group and ψ(G)=∑g∈Go(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (G)=\sum _{g\in {G}}{o(g)}$$\end{document}. There are some results about the relation between ψ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (G)$$\end{document} and the structure of G. For instance, it is proved that if G is a group of order n and ψ(G)>2111617ψ(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (G)>\dfrac{211}{1617}\psi (C_n)$$\end{document}, then G is solvable. Herzog et al. in (J Algebra 511:215–226, 2018) put forward the following conjecture:
引用
收藏
页码:3 / 12
页数:9
相关论文
共 50 条