Cross-subject aesthetic preference recognition of Chinese dance posture using EEG

被引:0
|
作者
Jing Li
Shen-rui Wu
Xiang Zhang
Tian-jian Luo
Rui Li
Ying Zhao
Bo Liu
Hua Peng
机构
[1] Shaoxing University,Academy of Arts
[2] Shaoxing University,Department of Computer Science and Engineering
[3] Fujian Normal University,College of Computer and Cyber Security
[4] Central China Normal University,National Engineering Laboratory for Educational Big Data
[5] Jishou University,College of Information Science and Engineering
来源
Cognitive Neurodynamics | 2023年 / 17卷
关键词
Chinese dance posture; Aesthetic preference; Convolutional neural network; Cross-subject transfer; Electroencephalogram;
D O I
暂无
中图分类号
学科分类号
摘要
Due to the differences in knowledge, experience, background, and social influence, people have subjective characteristics in the process of dance aesthetic cognition. To explore the neural mechanism of the human brain in the process of dance aesthetic preference, and to find a more objective determining criterion for dance aesthetic preference, this paper constructs a cross-subject aesthetic preference recognition model of Chinese dance posture. Specifically, Dai nationality dance (a classic Chinese folk dance) was used to design dance posture materials, and an experimental paradigm for aesthetic preference of Chinese dance posture was built. Then, 91 subjects were recruited for the experiment, and their EEG signals were collected. Finally, the transfer learning method and convolutional neural networks were used to identify the aesthetic preference of the EEG signals. Experimental results have shown the feasibility of the proposed model, and the objective aesthetic measurement in dance appreciation has been implemented. Based on the classification model, the accuracy of aesthetic preference recognition is 79.74%. Moreover, the recognition accuracies of different brain regions, different hemispheres, and different model parameters were also verified by the ablation study. Additionally, the experimental results reflected the following two facts: (1) in the visual aesthetic processing of Chinese dance posture, the occipital and frontal lobes are more activated and participate in dance aesthetic preference; (2) the right brain is more involved in the visual aesthetic processing of Chinese dance posture, which is consistent with the common knowledge that the right brain is responsible for processing artistic activities.
引用
收藏
页码:311 / 329
页数:18
相关论文
共 50 条
  • [41] Generalized Contrastive Partial Label Learning for Cross-Subject EEG-Based Emotion Recognition
    Li, Wei
    Fan, Lingmin
    Shao, Shitong
    Song, Aiguo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 11
  • [42] Plug-and-Play Domain Adaptation for Cross-Subject EEG-based Emotion Recognition
    Zhao, Li-Ming
    Yan, Xu
    Lu, Bao-Liang
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 863 - 870
  • [43] Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning
    Li, Jinyu
    Hua, Haoqiang
    Xu, Zhihui
    Shu, Lin
    Xu, Xiangmin
    Kuang, Feng
    Wu, Shibin
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 145
  • [44] Emotion recognition while applying cosmetic cream using deep learning from EEG data; cross-subject analysis
    Kim, Jieun
    Hwang, Dong-Uk
    Son, Edwin J.
    Oh, Sang Hoon
    Kim, Whansun
    Kim, Youngkyung
    Kwon, Gusang
    PLOS ONE, 2022, 17 (11):
  • [45] Coarse-to-Fine Domain Adaptation for Cross-Subject EEG Emotion Recognition with Contrastive Learning
    Ran, Shuang
    Zhong, Wei
    Hue, Fei
    Ye, Long
    Zhang, Qin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XV, 2025, 15045 : 406 - 419
  • [46] Spatial-Temporal Constraint Learning for Cross-Subject EEG-Based Emotion Recognition
    Li, Wei
    Hou, Bowen
    Shao, Shitong
    Huan, Wei
    Tian, Ye
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [47] EEG-Based Cross-Subject Driver Drowsiness Recognition With an Interpretable Convolutional Neural Network
    Cui, Jian
    Lan, Zirui
    Sourina, Olga
    Muller-Wittig, Wolfgang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 7921 - 7933
  • [48] Capsule neural networks on spatio-temporal EEG frames for cross-subject emotion recognition
    Jana, Gopal Chandra
    Sabath, Anshuman
    Agrawal, Anupam
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 72
  • [49] EEGMatch: Learning With Incomplete Labels for Semisupervised EEG-Based Cross-Subject Emotion Recognition
    Zhou, Rushuang
    Ye, Weishan
    Zhang, Zhiguo
    Luo, Yanyang
    Zhang, Li
    Li, Linling
    Huang, Gan
    Dong, Yining
    Zhang, Yuan-Ting
    Liang, Zhen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [50] Cross-Subject EEG-Based Emotion Recognition Through Neural Networks With Stratified Normalization
    Fdez, Javier
    Guttenberg, Nicholas
    Witkowski, Olaf
    Pasquali, Antoine
    FRONTIERS IN NEUROSCIENCE, 2021, 15