Cross-subject aesthetic preference recognition of Chinese dance posture using EEG

被引:0
|
作者
Jing Li
Shen-rui Wu
Xiang Zhang
Tian-jian Luo
Rui Li
Ying Zhao
Bo Liu
Hua Peng
机构
[1] Shaoxing University,Academy of Arts
[2] Shaoxing University,Department of Computer Science and Engineering
[3] Fujian Normal University,College of Computer and Cyber Security
[4] Central China Normal University,National Engineering Laboratory for Educational Big Data
[5] Jishou University,College of Information Science and Engineering
来源
Cognitive Neurodynamics | 2023年 / 17卷
关键词
Chinese dance posture; Aesthetic preference; Convolutional neural network; Cross-subject transfer; Electroencephalogram;
D O I
暂无
中图分类号
学科分类号
摘要
Due to the differences in knowledge, experience, background, and social influence, people have subjective characteristics in the process of dance aesthetic cognition. To explore the neural mechanism of the human brain in the process of dance aesthetic preference, and to find a more objective determining criterion for dance aesthetic preference, this paper constructs a cross-subject aesthetic preference recognition model of Chinese dance posture. Specifically, Dai nationality dance (a classic Chinese folk dance) was used to design dance posture materials, and an experimental paradigm for aesthetic preference of Chinese dance posture was built. Then, 91 subjects were recruited for the experiment, and their EEG signals were collected. Finally, the transfer learning method and convolutional neural networks were used to identify the aesthetic preference of the EEG signals. Experimental results have shown the feasibility of the proposed model, and the objective aesthetic measurement in dance appreciation has been implemented. Based on the classification model, the accuracy of aesthetic preference recognition is 79.74%. Moreover, the recognition accuracies of different brain regions, different hemispheres, and different model parameters were also verified by the ablation study. Additionally, the experimental results reflected the following two facts: (1) in the visual aesthetic processing of Chinese dance posture, the occipital and frontal lobes are more activated and participate in dance aesthetic preference; (2) the right brain is more involved in the visual aesthetic processing of Chinese dance posture, which is consistent with the common knowledge that the right brain is responsible for processing artistic activities.
引用
收藏
页码:311 / 329
页数:18
相关论文
共 50 条
  • [1] Cross-subject aesthetic preference recognition of Chinese dance posture using EEG
    Li, Jing
    Wu, Shen-rui
    Zhang, Xiang
    Luo, Tian-jian
    Li, Rui
    Zhao, Ying
    Liu, Bo
    Peng, Hua
    COGNITIVE NEURODYNAMICS, 2023, 17 (02) : 311 - 329
  • [2] Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG
    Zuo, Xin
    Zhang, Chi
    Hamalainen, Timo
    Gao, Hanbing
    Fu, Yu
    Cong, Fengyu
    ENTROPY, 2022, 24 (09)
  • [3] Exploring EEG Features in Cross-Subject Emotion Recognition
    Li, Xiang
    Song, Dawei
    Zhang, Peng
    Zhang, Yazhou
    Hou, Yuexian
    Hu, Bin
    FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [4] Cross-Subject EEG Signal Recognition Using Deep Domain Adaptation Network
    Hang, Wenlong
    Feng, Wei
    Du, Ruoyu
    Liang, Shuang
    Chen, Yan
    Wang, Qiong
    Liu, Xuejun
    IEEE ACCESS, 2019, 7 : 128273 - 128282
  • [5] Cross-Subject emotion recognition from EEG using Convolutional Neural Networks
    Zhong, Xiaolong
    Yin, Zhong
    Zhang, Jianhua
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7516 - 7521
  • [6] EEG-based Cross-subject Mental Fatigue Recognition
    Liu, Yisi
    Lan, Zirui
    Cui, Jian
    Sourina, Olga
    Muller-Wittig, Wolfgang
    2019 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW), 2019, : 247 - 252
  • [7] Multisource Transfer Learning for Cross-Subject EEG Emotion Recognition
    Li, Jinpeng
    Qiu, Shuang
    Shen, Yuan-Yuan
    Liu, Cheng-Lin
    He, Huiguang
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3281 - 3293
  • [8] Joint EEG Feature Transfer and Semisupervised Cross-Subject Emotion Recognition
    Peng, Yong
    Liu, Honggang
    Kong, Wanzeng
    Nie, Feiping
    Lu, Bao-Liang
    Cichocki, Andrzej
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (07) : 8104 - 8115
  • [9] Contrastive Learning of Subject-Invariant EEG Representations for Cross-Subject Emotion Recognition
    Shen, Xinke
    Liu, Xianggen
    Hu, Xin
    Zhang, Dan
    Song, Sen
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (03) : 2496 - 2511
  • [10] Hybrid transfer learning strategy for cross-subject EEG emotion recognition
    Lu, Wei
    Liu, Haiyan
    Ma, Hua
    Tan, Tien-Ping
    Xia, Lingnan
    FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17