Non-linear and hysteretical finite element formulation applied to magnetostrictive materials

被引:0
|
作者
Roberto Palma
José L. Pérez-Aparicio
Robert L. Taylor
机构
[1] University of Granada,Department of Structural Mechanics and Hydraulic Engineering
[2] Universitat Politècnica de València,Department of Continuum Mechanics and Theory of Structures
[3] University of California at Berkeley,Department of Civil and Environmental Engineering
来源
Computational Mechanics | 2020年 / 65卷
关键词
Finite element method; Magnetostrictive; Maxwell stress tensor; Magnetic Debye memory; Convolution integrals; Hysteresis;
D O I
暂无
中图分类号
学科分类号
摘要
Giant magnetostrictive actuators are suitable for applications requiring large mechanical displacements under low magnetic fields; for instance Terfenol-D made out of rare earth-iron materials can produce important strains. But these actuators exhibit hysteretic non-linear behavior, making it very difficult to experimentally characterize them. Therefore, sophisticated numerical algorithms to develop computational tools are necessary. In this work, theoretical and numerical formulations within the finite element method are developed to simulate magnetostriction. Theoretically, within the framework of non-equilibrium thermodynamics, the hysteresis is introduced by the Debye-memory relaxation. Numerically, the main novelty is the time integration, coupled Newmark-β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} (for mechanical) and convolution integrals (for magnetic constitutive equations); the non-linearity is solved with the standard Newton–Raphson algorithm. Constitutive non-linearities are incorporated with the Maxwell stress tensor, quadratically dependent on the magnetic field. The numerical code is validated using analytical and experimental solutions; several examples are presented to demonstrate the capabilities of the present formulation.
引用
收藏
页码:1433 / 1445
页数:12
相关论文
共 50 条
  • [41] Higher-order finite element modeling and optimization of actuator with non-linear materials
    Petr Kropík
    Lenka Šroubová
    Roman Hamar
    Computing, 2013, 95 : 487 - 499
  • [42] Finite element formulation for implicit magnetostrictive constitutive relations
    S. Sudersan
    U. Saravanan
    A. Arockiarajan
    Computational Mechanics, 2020, 66 : 1497 - 1514
  • [43] Finite element formulation for implicit magnetostrictive constitutive relations
    Sudersan, S.
    Saravanan, U.
    Arockiarajan, A.
    COMPUTATIONAL MECHANICS, 2020, 66 (06) : 1497 - 1514
  • [44] Non-linear finite element analysis of composite panels
    Research and Development Center, Korea Infrastruct. Safety T., Anyang, Korea, Republic of
    不详
    Compos Part B:Eng, 4 (365-381):
  • [45] Non-linear Finite Element Analysis for Practical Application
    Schlune, Hendrik
    Plos, Mario
    Gylltoft, Kent
    NORDIC CONCRETE RESEARCH, 2009, 39 (01): : 75 - 88
  • [46] Some aspects of the non-linear finite element method
    Crisfield, MA
    Jelenic, G
    Mi, Y
    Zhong, HG
    Fan, Z
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 1997, 27 (01) : 19 - 40
  • [47] Non-linear finite element analysis of flexible pavements
    Hadi, MNS
    Bodhinayake, BC
    ADVANCES IN ENGINEERING SOFTWARE, 2003, 34 (11-12) : 657 - 662
  • [49] Finite Element Modeling of the Non-Linear Behavior of Landslides
    Idres, S.
    Ghouilem, K.
    Merakeb, S.
    Belhocine, M.
    JOURNAL OF APPLIED ENGINEERING SCIENCES, 2024, 14 (02) : 268 - 275
  • [50] ON THE SOLUTION OF NON-LINEAR FINITE-ELEMENT SYSTEMS
    MANSFIELD, L
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (06) : 752 - 765