Long-Time Asymptotics for Strong Solutions¶of the Thin Film Equation

被引:0
|
作者
J. A. Carrillo
G. Toscani
机构
[1] Departamento de Matemática Aplicada,
[2] Universidad de Granada,undefined
[3] 18071 Granada,undefined
[4] Spain,undefined
[5] Department of Mathematics,undefined
[6] University of Pavia,undefined
[7] via Ferrata 1,undefined
[8] 27100 Pavia,undefined
[9] Italy,undefined
来源
关键词
Entropy; Porous Medium; Time Decay; Parabolic Equation; Fourth Order;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the large-time behavior of strong solutions to the one-dimensional fourth order degenerate parabolic equation ut=−(uuxxx)x, modeling the evolution of the interface of a spreading droplet. For nonnegative initial values u0(x)∈H1(ℝ), both compactly supported or of finite second moment, we prove explicit and universal algebraic decay in the L1-norm of the strong solution u(x,t) towards the unique (among source type solutions) strong source type solution of the equation with the same mass. The method we use is based on the study of the time decay of the entropy introduced in [13] for the porous medium equation, and uses analogies between the thin film equation and the porous medium equation.
引用
收藏
页码:551 / 571
页数:20
相关论文
共 50 条
  • [41] On long-time asymptotics of solutions of parabolic equations with increasing leading coefficients
    V. N. Denisov
    Doklady Mathematics, 2017, 96 : 308 - 311
  • [42] Existence of weak solutions and long-time asymptotics for hydrodynamic model of swarming
    Chaudhuri, Nilasis
    Choi, Young-Pil
    Tse, Oliver
    Zatorska, Ewelina
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (02):
  • [43] Long-Time Asymptotics for Polymerization Models
    Calvo, Juan
    Doumic, Marie
    Perthame, Benoit
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 363 (01) : 111 - 137
  • [44] Long-time asymptotics for the focusing NLS equation with time-periodic boundary condition
    de Monvel, Anne Boutet
    Its, Alexander
    Kotlyarov, Vladimir
    COMPTES RENDUS MATHEMATIQUE, 2007, 345 (11) : 615 - 620
  • [45] Long-time asymptotics for semiconductor crystals
    Bechouche, P
    López, JL
    Soler, J
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (09) : 5861 - 5872
  • [46] Long-Time Asymptotics for Polymerization Models
    Juan Calvo
    Marie Doumic
    Benoît Perthame
    Communications in Mathematical Physics, 2018, 363 : 111 - 137
  • [47] LONG-TIME ASYMPTOTICS FOR THE COUPLED MODIFIED COMPLEX SHORT-PULSE EQUATION
    Liu, Wenhao
    Geng, Xianguo
    Liu, Huan
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2024, 23 (04) : 507 - 545
  • [48] Long-time Asymptotics for the Integrable Discrete Nonlinear Schrodinger Equation: the Focusing Case
    Yamane, Hideshi
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2019, 62 (02): : 227 - 253
  • [49] Long-time asymptotics of the n-dimensional fractional critical heat equation
    Tan, Zhong
    Yang, Yi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (06):
  • [50] Long-time asymptotics for a mixed nonlinear Schrodinger equation with the Schwartz initial data
    Cheng, Qiaoyuan
    Fan, Engui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 489 (02)