Global Classical Solutions and Stabilization in a Two-Dimensional Parabolic-Elliptic Keller–Segel–Stokes System

被引:0
|
作者
Jiashan Zheng
机构
[1] Yantai University,School of Mathematics and Statistics Science
关键词
Navier–Stokes system; Keller–Segel model; Global existence; Parabolic-elliptic; 35K20; 35K55; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
A class of parabolic-elliptic Keller–Segel–Stokes systems generalizing the prototype [graphic not available: see fulltext] is considered under boundary conditions of homogeneous Neumann type for n (the density of the cell population) and c (the chemical concentration), and Dirichlet type for u (the velocity field), in a bounded domain Ω⊆R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subseteq {\mathbb {R}}^2$$\end{document} with smooth boundary, where CS>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_S>0$$\end{document} and ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is a given sufficiently smooth function. The model is proposed to describe chemotaxis-fluid interaction in cases when the evolution of the chemoattractant is essentially dominated by production through cells. Moreover, the chemical diffuses much faster than the cells move. It is shown that under the condition that α>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \alpha >0, \end{aligned}$$\end{document}for any sufficiently smooth initial data (n0,u0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n_0,u_0 )$$\end{document} satisfying some compatibility conditions, the associated initial-boundary-value problem (KSF) possesses a global bounded classical solution. In comparison to the result for the corresponding fluid-free system, it is easy to see that the restriction on α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} here is optimal. Building on this boundedness property, it can finally even be proved that the corresponding solution of the system decays to (n¯0,n¯0,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{n}}_0,{\bar{n}}_0,0)$$\end{document} exponentially if CS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_S$$\end{document} is smaller, where n¯0=1|Ω|∫Ωn0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{n}}_0=\frac{1}{|\Omega |}\int _{\Omega }n_0$$\end{document}. Our main tool is consideration of the energy functional ∫Ωn1+α,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _{\Omega }n^{1+\alpha }, \end{aligned}$$\end{document}which is a new energy-like functional.
引用
收藏
相关论文
共 50 条
  • [21] Well-posedness and inviscid limits for the Keller-Segel-Navier-Stokes system of the parabolic-elliptic type
    Takeuchi, Taiki
    MATHEMATISCHE NACHRICHTEN, 2025, 298 (01) : 53 - 86
  • [22] On the uniqueness of mild solutions for the parabolic-elliptic Keller-Segel system in the critical Lp-space
    Ferreira, Lucas C. F.
    MATHEMATICS IN ENGINEERING, 2022, 4 (06):
  • [23] Large Self-Similar Solutions of the Parabolic-Elliptic Keller-Segel Model
    Biler, Piotr
    Karch, Grzegorz
    Wakui, Hiroshi
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2023, 72 (03) : 1027 - 1054
  • [24] On asymptotically almost periodic solutions of the parabolic-elliptic Keller-Segel system on real hyperbolic manifolds
    Thuy, Tran Van
    Van, Nguyen Thi
    Xuan, Pham Truong
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2024, 39 (04): : 665 - 682
  • [25] EXISTENCE OF BLOW-UP SOLUTIONS FOR A DEGENERATE PARABOLIC-ELLIPTIC KELLER-SEGEL SYSTEM WITH LOGISTIC SOURCE
    Tanaka, Yuya
    ARCHIVUM MATHEMATICUM, 2023, 59 (02): : 223 - 230
  • [26] Critical mass in a quasilinear parabolic-elliptic Keller-Segel model
    Cao, Xinru
    Gao, Xiaotong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 361 : 449 - 471
  • [27] EXISTENCE OF BLOW-UP SOLUTIONS FOR A DEGENERATE PARABOLIC-ELLIPTIC KELLER-SEGEL SYSTEM WITH LOGISTIC SOURCE
    Tanaka, Yuya
    ARCHIVUM MATHEMATICUM, 2023, 59 (03): : 223 - 230
  • [28] On Cauchy problem for fractional parabolic-elliptic Keller-Segel model
    Anh Tuan Nguyen
    Nguyen Huy Tuan
    Yang, Chao
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01) : 97 - 116
  • [29] ON THE NONLOCAL PARABOLIC-ELLIPTIC KELLER-SEGEL MODEL IN BOUNDED DOMAINS
    Tran, Dinh-ke
    Tran, Thi-thu
    Tran, Van-tuan
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2024, 23 (11) : 1730 - 1747
  • [30] Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity
    Fujie, Kentarou
    Winkler, Michael
    Yokota, Tomomi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (06) : 1212 - 1224