Linear Operators on Fock Spaces

被引:0
|
作者
Zengjian Lou
Kehe Zhu
Senhua Zhu
机构
[1] Shantou University,Department of Mathematics
[2] SUNY,Department of Mathematics and Statistics
[3] Dalian University of Technology,School of Mathematical Sciences
来源
关键词
Fock spaces; Atomic decomposition; Reproducing kernels; Complex interpolation; Primary 30H20; Secondary 47B32; 47B35;
D O I
暂无
中图分类号
学科分类号
摘要
We study linear operators acting on Fock spaces Fαp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^p_\alpha $$\end{document} for 0<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<\infty $$\end{document} and obtain several conditions for the boundedness and compactness of such operators. Our main results extend and strengthen several existing results in the literature concerning the boundedness and compactness of operators on Fα2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^2_\alpha $$\end{document}.
引用
收藏
页码:287 / 300
页数:13
相关论文
共 50 条
  • [21] Toeplitz Operators on Fock Spaces Fp(φ)
    Hu, Zhangjian
    Lv, Xiaofen
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 80 (01) : 33 - 59
  • [22] Hyponormality of Toeplitz operators on the Fock spaces
    Ko, Eungil
    Lee, Jongrak
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (11) : 1825 - 1843
  • [23] On Hankel operators between Fock spaces
    Xiaofen Lv
    Zhangjian Hu
    [J]. Banach Journal of Mathematical Analysis, 2020, 14 : 871 - 893
  • [24] On Toeplitz Operators Between Fock Spaces
    Mengestie, Tesfa
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 78 (02) : 213 - 224
  • [25] IDA AND HANKEL OPERATORS ON FOCK SPACES
    Hu, Zhangjian
    Virtanen, Jani A.
    [J]. ANALYSIS & PDE, 2023, 16 (09): : 2041 - 2077
  • [26] Hankel operators on doubling Fock spaces
    Lv, Xiaofen
    Wang, Ermin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [27] Hankel Operators Between Fock Spaces
    Zhangjian Hu
    Ermin Wang
    [J]. Integral Equations and Operator Theory, 2018, 90
  • [28] Composition operators on Fock type spaces
    Guo, Kunyu
    Izuchi, Keiji
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2008, 74 (3-4): : 807 - 828
  • [29] GENERALIZED FOCK SPACES AND ASSOCIATED OPERATORS
    CHOLEWINSKI, FM
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (01) : 177 - 202
  • [30] On Toeplitz Operators Between Fock Spaces
    Tesfa Mengestie
    [J]. Integral Equations and Operator Theory, 2014, 78 : 213 - 224