A Condition for the Hölder Regularity of Local Minimizers of a Nonlinear Elastic Energy in Two Dimensions

被引:0
|
作者
Jonathan J. Bevan
机构
[1] University of Surrey,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove the local Hölder continuity of strong local minimizers of the stored energy functional E(u)=∫Ωλ|∇u|2+h(det∇u)dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(u)=\int_{\Omega}\lambda |\nabla u|^{2}+h({\rm det} \nabla u)\,{\rm d}x$$\end{document}subject to a condition of ‘positive twist’. The latter turns out to be equivalent to requiring that u maps circles to suitably star-shaped sets. The convex function h(s) grows logarithmically as s→0+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s\to 0+}$$\end{document}, linearly as s→+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s \to +\infty}$$\end{document}, and satisfies h(s)=+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${h(s)=+\infty}$$\end{document} if s≦0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s \leqq 0}$$\end{document}. These properties encode a constitutive condition which ensures that material does not interpenetrate during a deformation and is one of the principal obstacles to proving the regularity of local or global minimizers. The main innovation is to prove that if a local minimizer has positive twist a.e. on a ball then an Euler-Lagrange type inequality holds and a Caccioppoli inequality can be derived from it. The claimed Hölder continuity then follows by adapting some well-known elliptic regularity theory. We also demonstrate the regularizing effect that the term ∫Ωh(det∇u)dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\int_{\Omega} h({\rm det} \nabla u)\,{\rm d}x}$$\end{document} can have by analysing the regularity of local minimizers in the class of ‘shear maps’. In this setting a more easily verifiable condition than that of positive twist is imposed, with the result that local minimizers are Hölder continuous.
引用
收藏
页码:249 / 285
页数:36
相关论文
共 50 条