Morley’s trisector Theorem for isosceles tetrahedron

被引:0
|
作者
Q. H. Tran
机构
[1] Vietnam National University at Hanoi,High School for Gifted Students, Hanoi University of Science
来源
Acta Mathematica Hungarica | 2021年 / 165卷
关键词
Morley’s trisector theorem; isosceles tetrahedron; 51M04; 51M25;
D O I
暂无
中图分类号
学科分类号
摘要
We extend Morley’s trisector theorem in the plane to an isosceles tetrahedron in three-dimensional space. We will show that the Morley tetrahedron of an isosceles tetrahedron is also isosceles tetrahedron. Furthermore, by the formula for distance in barycentric coordinate, we introduce and prove a general theorem on an isosceles tetrahedron.
引用
收藏
页码:308 / 315
页数:7
相关论文
共 50 条
  • [21] Morley's Theorem: A Walk in the Park
    Smyth, Malcolm Roger
    MATHEMATICAL INTELLIGENCER, 2015, 37 (03): : 60 - 60
  • [22] Morley’s Theorem: A Walk in the Park
    Malcolm Roger Smyth
    The Mathematical Intelligencer, 2015, 37 : 60 - 60
  • [23] A note on Morley's triangle theorem
    Mueller, Nancy
    Tikoo, Mohan
    Wang, Haohao
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2012, 43 (04) : 538 - 548
  • [24] Isosceles Tetrahedron and an Equimomental System of a Rigid Body
    E. A. Nikonova
    Vestnik St. Petersburg University, Mathematics, 2023, 56 : 119 - 124
  • [25] Isosceles Tetrahedron and an Equimomental System of a Rigid Body
    Nikonova, E. A.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2023, 56 (01) : 119 - 124
  • [26] A New Geometric Proof for Morley's Theorem
    Kilic, Mehmet
    AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (04): : 373 - 376
  • [27] The Morley tricorn a solid figure constructed from the diagram for Morley's theorem
    MacFarlane, A. J.
    MATHEMATICAL GAZETTE, 2011, 95 (532): : 49 - 51
  • [28] MORLEY THEOREM AND A CONVERSE
    KLEVEN, DJ
    AMERICAN MATHEMATICAL MONTHLY, 1978, 85 (02): : 100 - 105
  • [29] On Morley's theorem, determinantal identities and the QR algorithm
    Macfarlane, A. J.
    QUANTUM GROUPS, QUANTUM FOUNDATIONS, AND QUANTUM INFORMATION: A FESTSCHRIFT FOR TONY SUDBERY, 2010, 254
  • [30] The Hidden Twin of Morley's Five Circles Theorem
    Halbeisen, Lorenz
    Hungerbuhler, Norbert
    Loureiro, Vanessa
    AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (10): : 879 - 891