A virtual biopsy study of microsatellite instability in gastric cancer based on deep learning radiomics

被引:0
|
作者
Zinian Jiang
Wentao Xie
Xiaoming Zhou
Wenjun Pan
Sheng Jiang
Xianxiang Zhang
Maoshen Zhang
Zhenqi Zhang
Yun Lu
Dongsheng Wang
机构
[1] Qingdao University,Qingdao Medical College
[2] The Affiliated Hospital of Qingdao University,Department of Gastrointestinal Surgery
[3] The Affiliated Hospital of Qingdao University,Department of Radiology
[4] The Affiliated Hospital of Qingdao University,Department of Pathology
[5] Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery,undefined
来源
关键词
Gastric cancer; Microsatellite instability (MSI); Radiomics; Deep learning; Computed tomography;
D O I
暂无
中图分类号
学科分类号
摘要
MSI is an important biomarker for immunotherapy in gastric cancer.Quantitative radiomics features were closely related to MSI in gastric cancer.Combining clinical and radiomics features with deep learning could evaluate MSI noninvasively.
引用
收藏
相关论文
共 50 条
  • [41] Development and validation of a radiomics-based nomogram for the preoperative prediction of microsatellite instability in colorectal cancer
    Mingliang Ying
    Jiangfeng Pan
    Guanghong Lu
    Shaobin Zhou
    Jianfei Fu
    Qinghua Wang
    Lixia Wang
    Bin Hu
    Yuguo Wei
    Junkang Shen
    BMC Cancer, 22
  • [42] Magnetic resonance-based radiomics nomogram for predicting microsatellite instability status in endometrial cancer
    Lin, Zijing
    Wang, Ting
    li, Haiming
    Xiao, Meiling
    Ma, Xiaoliang
    Gu, Yaji
    Qiang, Jinwei
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (01) : 108 - 120
  • [43] Radiomics-based prediction of microsatellite instability in colorectal cancer at initial computed tomography evaluation
    Jennifer S. Golia Pernicka
    Johan Gagniere
    Jayasree Chakraborty
    Rikiya Yamashita
    Lorenzo Nardo
    John M. Creasy
    Iva Petkovska
    Richard R. K. Do
    David D. B. Bates
    Viktoriya Paroder
    Mithat Gonen
    Martin R. Weiser
    Amber L. Simpson
    Marc J. Gollub
    Abdominal Radiology, 2019, 44 : 3755 - 3763
  • [44] Radiomics-based prediction of microsatellite instability in colorectal cancer at initial computed tomography evaluation
    Pernicka, Jennifer S. Golia
    Gagniere, Johan
    Chakraborty, Jayasree
    Yamashita, Rikiya
    Nardo, Lorenzo
    Creasy, John M.
    Petkovska, Iva
    Do, Richard R. K.
    Bates, David D. B.
    Paroder, Viktoriya
    Gonen, Mithat
    Weiser, Martin R.
    Simpson, Amber L.
    Gollub, Marc J.
    ABDOMINAL RADIOLOGY, 2019, 44 (11) : 3755 - 3763
  • [45] Computed Tomography-Based Radiomics Model to Preoperatively Predict Microsatellite Instability Status in Colorectal Cancer: A Multicenter Study
    Li, Zhi
    Zhong, Qi
    Zhang, Liang
    Wang, Minhong
    Xiao, Wenbo
    Cui, Feng
    Yu, Fang
    Huang, Chencui
    Feng, Zhan
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [46] Radiomics and deep learning in lung cancer
    Michele Avanzo
    Joseph Stancanello
    Giovanni Pirrone
    Giovanna Sartor
    Strahlentherapie und Onkologie, 2020, 196 : 879 - 887
  • [47] Radiomics and deep learning in lung cancer
    Avanzo, Michele
    Stancanello, Joseph
    Pirrone, Giovanni
    Sartor, Giovanna
    STRAHLENTHERAPIE UND ONKOLOGIE, 2020, 196 (10) : 879 - 887
  • [48] Deep learning radiomics in cancer imaging
    Hosny, Ahmed
    CLINICAL CANCER RESEARCH, 2021, 27 (05)
  • [49] A Deep Learning Based Model to Screen Colorectal Tissue for the Presence of Microsatellite Instability
    Saraf, Sahil
    Teng, Wai Po Kevin
    Taghipour, Kaveh
    Jialdasani, Rajasa
    Chatterjee, Priti
    Chowdhury, Zachariah
    Santosh, K. V.
    LABORATORY INVESTIGATION, 2024, 104 (03) : S1619 - S1620
  • [50] A microsatellite based multiplex PCR method for the detection of chromosomal instability in gastric cancer
    Meike Kohlruss
    Magdalena Reiche
    Moritz Jesinghaus
    Bianca Grosser
    Julia Slotta-Huspenina
    Alexander Hapfelmeier
    Lukas Bauer
    Alexander Novotny
    Wilko Weichert
    Gisela Keller
    Scientific Reports, 8