Variable selection in functional additive regression models

被引:0
|
作者
Manuel Febrero-Bande
Wenceslao González-Manteiga
Manuel Oviedo de la Fuente
机构
[1] Universidade de Santiago de Compostela,Department of Statistics, Mathematical Analysis and Optimization
[2] Technological Institute for Industrial Mathematics,undefined
来源
Computational Statistics | 2019年 / 34卷
关键词
Variable selection; Functional regression additive models; Energy production;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers the problem of variable selection in regression models in the case of functional variables that may be mixed with other type of variables (scalar, multivariate, directional, etc.). Our proposal begins with a simple null model and sequentially selects a new variable to be incorporated into the model based on the use of distance correlation proposed by Székely et al. (Ann Stat 35(6):2769–2794, 2007). For the sake of simplicity, this paper only uses additive models. However, the proposed algorithm may assess the type of contribution (linear, non linear, ...) of each variable. The algorithm has shown quite promising results when applied to simulations and real data sets.
引用
收藏
页码:469 / 487
页数:18
相关论文
共 50 条
  • [41] Variable selection in partial linear regression with functional covariate
    Aneiros, G.
    Ferraty, F.
    Vieu, P.
    [J]. STATISTICS, 2015, 49 (06) : 1322 - 1347
  • [42] An RKHS model for variable selection in functional linear regression
    Berrendero, Jose R.
    Bueno-Larraz, Beatriz
    Cuevas, Antonio
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 170 : 25 - 45
  • [43] Modified see variable selection for linear instrumental variable regression models
    Zhao, Peixin
    Xue, Liugen
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (14) : 4852 - 4861
  • [44] Quantile function regression and variable selection for sparse models
    Yoshida, Takuma
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04): : 1196 - 1221
  • [45] Variable selection of the quantile varying coefficient regression models
    Weihua Zhao
    Riquan Zhang
    Yazhao Lv
    Jicai Liu
    [J]. Journal of the Korean Statistical Society, 2013, 42 : 343 - 358
  • [46] Bayesian Variable Selection for Gaussian Copula Regression Models
    Alexopoulos, Angelos
    Bottolo, Leonardo
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (03) : 578 - 593
  • [47] Variable selection in Cox regression models with varying coefficients
    Honda, Toshio
    Haerdle, Wolfgang Karl
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 148 : 67 - 81
  • [48] Variable selection of the quantile varying coefficient regression models
    Zhao, Weihua
    Zhang, Riquan
    Lv, Yazhao
    Liu, Jicai
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2013, 42 (03) : 343 - 358
  • [49] Robust variable selection for finite mixture regression models
    Tang, Qingguo
    Karunamuni, R. J.
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2018, 70 (03) : 489 - 521
  • [50] Best subsets variable selection in nonnormal regression models
    Lindsey, Charles
    Sheather, Simon
    [J]. STATA JOURNAL, 2015, 15 (04): : 1046 - 1059