The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally

被引:0
|
作者
Gregory J. Dick
机构
[1] University of Michigan,Department of Earth and Environmental Sciences
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The discovery of chemosynthetic ecosystems at deep-sea hydrothermal vents in 1977 changed our view of biology. Chemosynthetic bacteria and archaea form the foundation of vent ecosystems by exploiting the chemical disequilibrium between reducing hydrothermal fluids and oxidizing seawater, harnessing this energy to fix inorganic carbon into biomass. Recent research has uncovered fundamental aspects of these microbial communities, including their relationships with underlying geology and hydrothermal geochemistry, interactions with animals via symbiosis and distribution both locally in various habitats within vent fields and globally across hydrothermal systems in diverse settings. Although ‘black smokers’ and symbioses between microorganisms and macrofauna attract much attention owing to their novelty and the insights they provide into life under extreme conditions, habitats such as regions of diffuse flow, subseafloor aquifers and hydrothermal plumes have important roles in the global cycling of elements through hydrothermal systems. Owing to sharp contrasts in physical and chemical conditions between these various habitats and their dynamic, extreme and geographically isolated nature, hydrothermal vents provide a valuable window into the environmental and ecological forces that shape microbial communities and insights into the limits, origins and evolution of microbial life.
引用
收藏
页码:271 / 283
页数:12
相关论文
共 50 条
  • [21] Experimental ecology at deep-sea hydrothermal vents: a perspective
    Van Dover, CL
    Lutz, RA
    JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY, 2004, 300 (1-2) : 273 - 307
  • [22] DEEP-SEA PRIMARY PRODUCTION AT THE GALAPAGOS HYDROTHERMAL VENTS
    KARL, DM
    WIRSEN, CO
    JANNASCH, HW
    SCIENCE, 1980, 207 (4437) : 1345 - 1347
  • [23] Antarctic Marine Biodiversity and Deep-Sea Hydrothermal Vents
    Chown, Steven L.
    PLOS BIOLOGY, 2012, 10 (01)
  • [24] Recent advances in imaging deep-sea hydrothermal vents
    Lutz, R
    Shank, T
    Rona, P
    Reed, A
    Allen, C
    Lange, W
    Low, S
    Kristof, E
    CAHIERS DE BIOLOGIE MARINE, 2002, 43 (3-4): : 267 - 269
  • [25] A review of predators and predation at deep-sea hydrothermal vents
    Voight, JR
    CAHIERS DE BIOLOGIE MARINE, 2000, 41 (02): : 155 - 166
  • [26] LARVAL DEVELOPMENT AND DISPERSAL AT DEEP-SEA HYDROTHERMAL VENTS
    LUTZ, RA
    JABLONSKI, D
    TURNER, RD
    SCIENCE, 1984, 226 (4681) : 1451 - 1454
  • [27] Thermophilic microbial communities of deep-sea hydrothermal vents
    Miroshnichenko, ML
    MICROBIOLOGY, 2004, 73 (01) : 1 - 13
  • [28] Biogeography of Persephonella in deep-sea hydrothermal vents of the Western Pacific
    Mino, Sayaka
    Makita, Hiroko
    Toki, Tomohiro
    Miyazaki, Junichi
    Kato, Shingo
    Watanabe, Hiromi
    Imachi, Hiroyuki
    Watsuji, Tomo-o
    Nunoura, Takuro
    Kojima, Shigeaki
    Sawabe, Tomoo
    Takai, Ken
    Nakagawa, Satoshi
    FRONTIERS IN MICROBIOLOGY, 2013, 4
  • [29] Microbially Mediated Hydrogen Cycling in Deep-Sea Hydrothermal Vents
    Adam, Nicole
    Perner, Mirjam
    FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [30] Archaeal diversity and community development in deep-sea hydrothermal vents
    Takai, Ken
    Nakamura, Kentaro
    CURRENT OPINION IN MICROBIOLOGY, 2011, 14 (03) : 282 - 291