In this paper, we study the planar Hamiltonian system \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot x = J(A(\theta )x + \nabla f(x,\theta )), \dot \theta = \omega , x \in \mathbb{R}^2 , \theta \in \mathbb{T}^d ,$$\end{document} where f is real analytic in x and θ, A(θ) is a 2 × 2 real analytic symmetric matrix, J = (1−1) and ω is a Diophantine vector. Under the assumption that the unperturbed system \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot x = JA(\theta )x$$\end{document}, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot \theta = \omega$$\end{document} is reducible and stable, we obtain a series of criteria for the stability and instability of the equilibrium of the perturbed system.