The stability of the elliptic equilibrium of planar quasi-periodic Hamiltonian systems

被引:2
|
作者
Wu, Yun Chao [1 ]
Wang, Yi Qian [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Lyapunov stability; elliptic equilibrium; Hamiltonian system; quasi-periodic system; REVERSIBLE-SYSTEMS;
D O I
10.1007/s10114-011-0006-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the planar Hamiltonian system x = J(A(theta)x + del f(x,theta)), theta = omega, x is an element of R-2, theta is an element of T-d, where f is real analytic in x and theta, A(theta) is a 2 x 2 real analytic symmetric matrix, J = ((1) (-1)) and omega is a Diophantine vector. Under the assumption that the unperturbed system is reducible and stable, we obtain a series of criteria for the stability and instability of the equilibrium of the perturbed system.
引用
收藏
页码:801 / 816
页数:16
相关论文
共 50 条