Semi-discrete Galerkin approximation of the single layer equation by general splines

被引:0
|
作者
Mark Ainsworth
Rolf Grigorieff
Ian Sloan
机构
[1] Mathematics Department,
[2] Leicester University,undefined
[3] Leicester LE1 7RH,undefined
[4] UK,undefined
[5] ain@mcs.le.ac.uk ,undefined
[6] Fachbereich Mathematik,undefined
[7] Sekr. MA 6-4,undefined
[8] Technische Universität Berlin,undefined
[9] Straße des 17. Juni 135,undefined
[10] D-10623,undefined
[11] Berlin,undefined
[12] Germany,undefined
[13] grigo@math.tu-berlin.de ,undefined
[14] School of Mathematics,undefined
[15] University of New South Wales,undefined
[16] Sydney 2052,undefined
[17] Australia,undefined
[18] I.Sloan@unsw.edu.au ,undefined
来源
Numerische Mathematik | 1998年 / 79卷
关键词
Mathematics Subject Classification (1991):65N30;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with a semi-discrete version of the Galerkin method for the single-layer equation in a plane, in which the outer integral is approximated by a quadrature rule. A feature of the analysis is that it does not require high precision quadrature or exceptional smoothness of the data. Instead, the assumptions on the quadrature rule are that constant functions are integrated exactly, that the rule is based on sufficiently many quadrature points to resolve the approximation space, and that the Peano constant of the rule is sufficiently small. It is then shown that the semi-discrete Galerkin approximation is well posed. For the trial and test spaces we consider quite general piecewise polynomials on quasi-uniform meshes, ranging from discontinuous piecewise polynomials to smoothest splines. Since it is not assumed that the quadrature rule integrates products of basis functions exactly, one might expect degradation in the rate of convergence. To the contrary, it is shown that the semi-discrete Galerkin approximation will converge at the same rate as the corresponding Galerkin approximation in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $H^0$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $H^{-1}$\end{document} norms.
引用
收藏
页码:157 / 174
页数:17
相关论文
共 50 条
  • [21] On the convergence of a three-layer semi-discrete scheme for the nonlinear dynamic Kirchhoff string equation
    Vashakidze, Zurab
    GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (04) : 615 - 627
  • [22] Binary modulated oscillations in a semi-discrete version of Burgers equation
    Hayes, BT
    PHYSICA D, 1997, 106 (3-4): : 287 - 313
  • [23] Exact solutions of semi-discrete sine-Gordon equation
    Y. Hanif
    U. Saleem
    The European Physical Journal Plus, 134
  • [24] CONVERGENCE TO EQUILIBRIUM FOR A TIME SEMI-DISCRETE DAMPED WAVE EQUATION
    Pierre, Morgan
    Rogeon, Philippe
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (04): : 1041 - 1048
  • [25] PT-symmetric semi-discrete short pulse equation
    Hanif, Y.
    Sarfraz, H.
    Saleem, U.
    RESULTS IN PHYSICS, 2020, 19
  • [26] SEMI-DISCRETE GALERKIN METHOD FOR HYPERBOLIC PROBLEMS AND ITS APPLICATION TO PROBLEMS IN ELASTODYNAMICS
    BENTHIEN, GW
    RALSTON, TD
    GURTIN, ME
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1972, 48 (01) : 51 - &
  • [27] The controllability for the semi-discrete wave equation with a finite element method
    Guojie Zheng
    Xin Yu
    Advances in Difference Equations, 2013
  • [28] A semi-discrete scheme for the stochastic nonlinear Schrödinger equation
    A. De Bouard
    A. Debussche
    Numerische Mathematik, 2004, 96 : 733 - 770
  • [29] Exact solutions of semi-discrete sine-Gordon equation
    Hanif, Y.
    Saleem, U.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (05):
  • [30] An integrable semi-discrete equation and combinatorial numbers with their combinatorial interpretations
    Chang, Xiang-Ke
    Hu, Xing-Biao
    Yu, Guo-Fu
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (07) : 1093 - 1107