On Mason’s Rigidity Theorem

被引:0
|
作者
Piotr T. Chruściel
Paul Tod
机构
[1] LMPT,
[2] Fédération Denis Poisson,undefined
[3] Mathematical Institute and Hertford College,undefined
[4] Mathematical Institute and St John’s College,undefined
来源
Communications in Mathematical Physics | 2009年 / 285卷
关键词
Integral Curve; Ricci Tensor; Killing Vector; Weyl Tensor; Null Geodesic;
D O I
暂无
中图分类号
学科分类号
摘要
Following an argument proposed by Mason, we prove that there are no algebraically special asymptotically simple vacuum space-times with a smooth, shear-free, geodesic congruence of principal null directions extending transversally to a cross-section of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{I}^{+}}$$\end{document} . Our analysis leaves the door open for escaping this conclusion if the congruence is not smooth, or not transverse to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{I}^{+}}$$\end{document} . One of the elements of the proof is a new rigidity theorem for the Trautman-Bondi mass.
引用
收藏
相关论文
共 50 条