Riemann–Liouville Fractional Integral Inequalities for Generalized Harmonically Convex Fuzzy-Interval-Valued Functions

被引:0
|
作者
Muhammad Bilal Khan
Hatim Ghazi Zaini
Gustavo Santos-García
Pshtiwan Othman Mohammed
Mohamed S. Soliman
机构
[1] COMSATS University Islamabad,Department of Mathematics
[2] Taif University,Department of Computer Science, College of Computers and Information Technology
[3] University of Salamanca,Facultad de Economía Y Empresa and Multidisciplinary Institute of Enterprise (IME)
[4] University of Sulaimani,Department of Mathematics, College of Education
[5] Taif University,Department of Electrical Engineering, College of Engineering
关键词
Harmonically-convex fuzzy-interval-valued function; Hermite; Hadamard inequality; Hermite; Hadamard; Fejér inequality;
D O I
暂无
中图分类号
学科分类号
摘要
The framework of fuzzy-interval-valued functions (FIVFs) is a generalization of interval-valued functions (IVF) and single-valued functions. To discuss convexity with these kinds of functions, in this article, we introduce and investigate the harmonically h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{h}$$\end{document}-convexity for FIVFs through fuzzy-order relation (FOR). Using this class of harmonically h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{h}$$\end{document}-convex FIVFs (H-h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}-\mathsf{h}$$\end{document}-convex FIVFs), we prove some Hermite–Hadamard (H⋅H) and Hermite–Hadamard–Fejér (H⋅H Fejér) type inequalities via fuzzy interval Riemann–Liouville fractional integral (FI Riemann–Liouville fractional integral). The concepts and techniques of this paper are refinements and generalizations of many results which are proved in the literature.
引用
收藏
相关论文
共 50 条
  • [21] New Hermite-Hadamard-type inequalities for -convex fuzzy-interval-valued functions
    Khan, Muhammad Bilal
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Chu, Yu-Ming
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [22] Generalized Fractional Integral Inequalities for p-Convex Fuzzy Interval-Valued Mappings
    Khan, Muhammad Bilal
    Catas, Adriana
    Saeed, Tareq
    FRACTAL AND FRACTIONAL, 2022, 6 (06)
  • [23] Inequalities for generalized Riemann-Liouville fractional integrals of generalized strongly convex functions
    Farid, Ghulam
    Kwun, Young Chel
    Yasmeen, Hafsa
    Akkurt, Abdullah
    Kang, Shin Min
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [24] Generalized fractional integral inequalities of Hermite–Hadamard type for harmonically convex functions
    Dafang Zhao
    Muhammad Aamir Ali
    Artion Kashuri
    Hüseyin Budak
    Advances in Difference Equations, 2020
  • [25] Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions
    Khan, Muhammad Bilal
    Mohammed, Pshtiwan Othman
    Noor, Muhammad Aslam
    Abualnaja, Khadijah M.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 6552 - 6580
  • [26] STUDY OF A GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL VIA CONVEX FUNCTIONS
    Farid, Ghulam
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (01): : 37 - 48
  • [27] Riemann-Liouville Fractional Inclusions for Convex Functions Using Interval Valued Setting
    Stojiljkovic, Vuk
    Ramaswamy, Rajagopalan
    Abdelnaby, Ola A. Ashour
    Radenovic, Stojan
    MATHEMATICS, 2022, 10 (19)
  • [28] New Riemann-Liouville fractional Hermite-Hadamard type inequalities for harmonically convex functions
    Sanli, Zeynep
    Kunt, Mehmet
    Koroglu, Tuncay
    ARABIAN JOURNAL OF MATHEMATICS, 2020, 9 (02) : 431 - 441
  • [29] Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings
    Khan, Muhammad Bilal
    Treanta, Savin
    Alrweili, Hleil
    Saeed, Tareq
    Soliman, Mohamed S.
    AIMS MATHEMATICS, 2022, 7 (08): : 15659 - 15679
  • [30] Hadamard type local fractional integral inequalities for generalized harmonically convex functions and applications
    Sun, Wenbing
    Liu, Qiong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (09) : 5776 - 5787