We give an affirmative answer to the following question: Is any Borel subset of a Cantor set C a sum of a countable number of pairwise disjoint h-homogeneous subspaces that are closed in X? It follows that every Borel set \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${X \subset {\bf R}^n}$$\end{document} can be partitioned into countably many h-homogeneous subspaces that are Gδ-sets in X.