Analysis of the bread wheat genome using whole-genome shotgun sequencing

被引:0
|
作者
Rachel Brenchley
Manuel Spannagl
Matthias Pfeifer
Gary L. A. Barker
Rosalinda D’Amore
Alexandra M. Allen
Neil McKenzie
Melissa Kramer
Arnaud Kerhornou
Dan Bolser
Suzanne Kay
Darren Waite
Martin Trick
Ian Bancroft
Yong Gu
Naxin Huo
Ming-Cheng Luo
Sunish Sehgal
Bikram Gill
Sharyar Kianian
Olin Anderson
Paul Kersey
Jan Dvorak
W. Richard McCombie
Anthony Hall
Klaus F. X. Mayer
Keith J. Edwards
Michael W. Bevan
Neil Hall
机构
[1] Centre for Genome Research,Department of Plant Sciences
[2] University of Liverpool,Department of Plant Pathology
[3] Liverpool L69 7ZB,Department of Plant Sciences
[4] UK,undefined
[5] MIPS/IBIS,undefined
[6] Helmholtz- Zentrum München,undefined
[7] 85764 Neuherberg,undefined
[8] Germany,undefined
[9] School of Biological Sciences,undefined
[10] University of Bristol,undefined
[11] Bristol BS8 1UG,undefined
[12] UK,undefined
[13] John Innes Centre,undefined
[14] Norwich NR4 7UH,undefined
[15] UK,undefined
[16] Cold Spring Harbor Laboratory,undefined
[17] Cold Spring Harbor,undefined
[18] New York 11724,undefined
[19] USA,undefined
[20] European Bioinformatics Institute,undefined
[21] Hinxton CB10 1SD,undefined
[22] UK,undefined
[23] USDA Western Regional Laboratory,undefined
[24] University of California,undefined
[25] Kansas State University,undefined
[26] North Dakota State University,undefined
来源
Nature | 2012年 / 491卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Bread wheat (Triticum aestivum) is a globally important crop, accounting for 20 per cent of the calories consumed by humans. Major efforts are underway worldwide to increase wheat production by extending genetic diversity and analysing key traits, and genomic resources can accelerate progress. But so far the very large size and polyploid complexity of the bread wheat genome have been substantial barriers to genome analysis. Here we report the sequencing of its large, 17-gigabase-pair, hexaploid genome using 454 pyrosequencing, and comparison of this with the sequences of diploid ancestral and progenitor genomes. We identified between 94,000 and 96,000 genes, and assigned two-thirds to the three component genomes (A, B and D) of hexaploid wheat. High-resolution synteny maps identified many small disruptions to conserved gene order. We show that the hexaploid genome is highly dynamic, with significant loss of gene family members on polyploidization and domestication, and an abundance of gene fragments. Several classes of genes involved in energy harvesting, metabolism and growth are among expanded gene families that could be associated with crop productivity. Our analyses, coupled with the identification of extensive genetic variation, provide a resource for accelerating gene discovery and improving this major crop.
引用
收藏
页码:705 / 710
页数:5
相关论文
共 50 条
  • [41] Genetic landscape of human mitochondrial genome using whole-genome sequencing
    Wang, Yijing
    Zhao, Guihu
    Fang, Zhenghuan
    Pan, Hongxu
    Zhao, Yuwen
    Wang, Yige
    Zhou, Xun
    Wang, Xiaomeng
    Luo, Tengfei
    Zhang, Yi
    Wang, Zheng
    Chen, Qian
    Dong, Lijie
    Huang, Yuanfeng
    Zhou, Qiao
    Xia, Lu
    Li, Bin
    Guo, Jifeng
    Xia, Kun
    Tang, Beisha
    Li, Jinchen
    [J]. HUMAN MOLECULAR GENETICS, 2022, 31 (11) : 1747 - 1761
  • [42] Genome sequencing guide: An introductory toolbox to whole-genome analysis methods
    Burian, Alexis N.
    Zhao, Wufan
    Lo, Te-Wen
    Thurtle-Schmidt, Deborah M.
    [J]. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION, 2021, 49 (05) : 815 - 825
  • [43] Whole-genome shotgun optical mapping of Rhodobacter sphaeroides strain 2.4.1 and its use for whole-genome shotgun sequence assembly
    Zhou, SG
    Kvikstad, E
    Kile, A
    Severin, J
    Forrest, D
    Runnheim, R
    Churas, C
    Hickman, JW
    Mackenzie, C
    Choudhary, M
    Donohue, T
    Kaplan, S
    Schwartz, DC
    [J]. GENOME RESEARCH, 2003, 13 (09) : 2142 - 2151
  • [44] Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data
    Birol, Inanc
    Raymond, Anthony
    Jackman, Shaun D.
    Pleasance, Stephen
    Coope, Robin
    Taylor, Greg A.
    Saint Yuen, Macaire Man
    Keeling, Christopher I.
    Brand, Dana
    Vandervalk, Benjamin P.
    Kirk, Heather
    Pandoh, Pawan
    Moore, Richard A.
    Zhao, Yongjun
    Mungall, Andrew J.
    Jaquish, Barry
    Yanchuk, Alvin
    Ritland, Carol
    Boyle, Brian
    Bousquet, Jean
    Ritland, Kermit
    MacKay, John
    Bohlmann, Joerg
    Jones, Steven J. M.
    [J]. BIOINFORMATICS, 2013, 29 (12) : 1492 - 1497
  • [45] Analysis of genetic systems using experimental evolution and whole-genome sequencing
    Hegreness, Matthew
    Kishony, Roy
    [J]. GENOME BIOLOGY, 2007, 8 (01)
  • [46] Analysis of genetic systems using experimental evolution and whole-genome sequencing
    Matthew Hegreness
    Roy Kishony
    [J]. Genome Biology, 8
  • [47] Comparison of Methods To Collect Fecal Samples for Microbiome Studies Using Whole-Genome Shotgun Metagenomic Sequencing
    Byrd, Doratha A.
    Sinha, Rashmi
    Hoffman, Kristi L.
    Chen, Jun
    Hua, Xing
    Shi, Jianxin
    Chia, Nicholas
    Petrosino, Joseph
    Vogtmann, Emily
    [J]. MSPHERE, 2020, 5 (01)
  • [48] Personalized pharmacogenomics profiling using whole-genome sequencing
    Mizzi, Clint
    Peters, Brock
    Mitropoulou, Christina
    Mitropoulos, Konstantinos
    Katsila, Theodora
    Agarwal, Misha R.
    van Schaik, Ron H. N.
    Drmanac, Radoje
    Borg, Joseph
    Patrinos, George P.
    [J]. PHARMACOGENOMICS, 2014, 15 (09) : 1223 - 1234
  • [49] Genome partitioning and whole-genome analysis
    Schork, NJ
    [J]. GENETIC DISSECTION OF COMPLEX TRAITS, 2001, 42 : 299 - 322
  • [50] Saturation analysis for whole-genome bisulfite sequencing data
    Emanuele Libertini
    Simon C Heath
    Rifat A Hamoudi
    Marta Gut
    Michael J Ziller
    Javier Herrero
    Agata Czyz
    Victor Ruotti
    Hendrik G Stunnenberg
    Mattia Frontini
    Willem H Ouwehand
    Alexander Meissner
    Ivo G Gut
    Stephan Beck
    [J]. Nature Biotechnology, 2016, 34 : 691 - 693