Double Lusin condition and Vitali convergence theorem for the Itô–McShane Integral

被引:0
|
作者
Mhelmar A. Labendia
Jeffer Dave A. Cagubcob
机构
[1] Mindanao State University-Iligan Institute of Technology,Department of Mathematics and Statistics, Center for Graph Theory, Algebra and Analysis
[2] Mindanao State University-Iligan Institute of Technology, Premier Research Institute of Science and Mathematics, College of Science and Mathematics
来源
关键词
Belated McShane integral; Itô–McShane integral; -equi-integrable; -equi-; -Wiener process; 60H30; 60H05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we formulate a version of Vitali convergence theorem for the Itô–McShane integral of an operator-valued stochastic process with respect to a Q-Wiener process. We also characterize the integral using double Lusin condition.
引用
收藏
页码:453 / 473
页数:20
相关论文
共 50 条
  • [21] A Version of Fundamental Theorem for the Ito-McShane Integral of an Operator-Valued Stochastic Process
    Cagubcob, Jeffer Dave A.
    Labendia, Mhelmar A.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (01): : 101 - 117
  • [22] A Condition for Convergence of a Certain Improper Integral Solution
    Cowieson, William
    AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (03): : 281 - 282
  • [23] Sufficient Condition on the Fractional Integral for the Convergence of a Function
    Duarte-Mermoud, Manuel A.
    Aguila-Camacho, Norelys
    Gallegos, Javier A.
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [24] A Condition for Convergence of a Certain Improper Integral Proposal
    Hernandez Melo, Cesar Adolfo
    AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (03): : 281 - 281
  • [25] A dominated-type convergence theorem for the Feynman integral
    Johnson, GW
    Kim, JG
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 3104 - 3112
  • [26] A dominated convergence theorem in the K-H integral
    Lu, JT
    Lee, PY
    TAIWANESE JOURNAL OF MATHEMATICS, 2003, 7 (03): : 507 - 512
  • [27] An interpolation theorem related to the ae convergence of integral operators
    Kiselev, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (06) : 1781 - 1788
  • [28] A Controlled Convergence Theorem for the C-Pettis Integral
    Da Fang ZHAO Bi Wen LI School of Mathematics and Statistics Hubei Normal University Hubei P R China
    数学研究与评论, 2010, 30 (04) : 756 - 760
  • [29] Bounded convergence theorem for abstract Kurzweil–Stieltjes integral
    Giselle Antunes Monteiro
    Umi Mahnuna Hanung
    Milan Tvrdý
    Monatshefte für Mathematik, 2016, 180 : 409 - 434
  • [30] On the dominated convergence theorem for the Kurzweil-Stieltjes integral
    Gallegos, Claudio A.
    Henriquez, Hernan R.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (10) : 4559 - 4568