A particle-filter framework for robust cryo-EM 3D reconstruction

被引:0
|
作者
Mingxu Hu
Hongkun Yu
Kai Gu
Zhao Wang
Huabin Ruan
Kunpeng Wang
Siyuan Ren
Bing Li
Lin Gan
Shizhen Xu
Guangwen Yang
Yuan Shen
Xueming Li
机构
[1] Tsinghua University,MOE Key Laboratory of Protein Science, School of Life Sciences
[2] Tsinghua University,Advanced Innovation Center for Structural Biology
[3] National Supercomputing Center in Wuxi,Department of Computer Science and Technology
[4] Tsinghua University,Department of Electronic Engineering
[5] Tsinghua University,undefined
[6] Tsinghua-Peking Joint Center for Life Sciences,undefined
来源
Nature Methods | 2018年 / 15卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Single-particle electron cryomicroscopy (cryo-EM) involves estimating a set of parameters for each particle image and reconstructing a 3D density map; robust algorithms with accurate parameter estimation are essential for high resolution and automation. We introduce a particle-filter algorithm for cryo-EM, which provides high-dimensional parameter estimation through a posterior probability density function (PDF) of the parameters given in the model and the experimental image. The framework uses a set of random support points to represent such a PDF and assigns weighting coefficients not only among the parameters of each particle but also among different particles. We implemented the algorithm in a new program named THUNDER, which features self-adaptive parameter adjustment, tolerance to bad particles, and per-particle defocus refinement. We tested the algorithm by using cryo-EM datasets for the cyclic-nucleotide-gated (CNG) channel, the proteasome, β-galactosidase, and an influenza hemagglutinin (HA) trimer, and observed substantial improvement in resolution.
引用
收藏
页码:1083 / 1089
页数:6
相关论文
共 50 条
  • [31] 3.9Å phase plate cryo-EM reconstruction of the nucleosome core particle
    Sandin, Sara Helena Ruth Engholmen
    Vogirala, Vinod K.
    Inian, Oviya
    Wong, Andrew S. W.
    Nordenskiold, Lars
    Plitzko, Juergen M.
    Danev, Radostin
    Chua, Eugene Yue Dao
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : C1293 - C1293
  • [32] Auto3DCryoMap: an automated particle alignment approach for 3D cryo-EM density map reconstruction (vol 21, 534, 2020)
    Al-Azzawi, Adil
    Ouadou, Anes
    Duan, Ye
    Cheng, Jianlin
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [33] A Method for Generation of Synthetic 2D and 3D Cryo-EM Images
    N. A. Anoshina
    T. B. Sagindykov
    D. V. Sorokin
    Programming and Computer Software, 2018, 44 : 240 - 247
  • [34] A Method for Generation of Synthetic 2D and 3D Cryo-EM Images
    Anoshina, N. A.
    Sagindykov, T. B.
    Sorokin, D., V
    PROGRAMMING AND COMPUTER SOFTWARE, 2018, 44 (04) : 240 - 247
  • [35] Breaking the 3Å resolution barrier in single particle cryo-EM
    Fischer, N.
    Neumann, P.
    Bock, L.
    Ficner, R.
    Rodnina, M.
    Stark, H.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2015, 44 : S46 - S46
  • [36] 3D structure of the CD26-ADA complex obtained by cryo-EM and single particle analysis
    Ludwig, K
    Fan, H
    Dobers, J
    Berger, M
    Reutter, W
    Böttcher, C
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 313 (02) : 223 - 229
  • [37] 3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM
    Punjani, Ali
    Fleet, David J.
    JOURNAL OF STRUCTURAL BIOLOGY, 2021, 213 (02)
  • [38] A kinetic model for solving a combination optimization problem in ab-initio Cryo-EM 3D reconstruction
    Liu, Jiaxuan
    Lu, Yonggang
    Zhu, Li
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [39] Tidy up cryo-EM sample grids with 3D printed tools
    Hamaguchi, Tasuku
    Yonekura, Koji
    JOURNAL OF STRUCTURAL BIOLOGY, 2020, 209 (01)
  • [40] Super Resolution Cryo-EM Maps with 3D Deep Generative Networks
    Subramaniya, Sai Raghavendra Maddhuri Venkata
    Terashi, Genki
    Kihara, Daisuke
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 283A - 283A