Asymptotic-Preserving Neural Networks for Multiscale Time-Dependent Linear Transport Equations

被引:0
|
作者
Shi Jin
Zheng Ma
Keke Wu
机构
[1] Shanghai Jiao Tong University,School of Mathematical Sciences
[2] Shanghai Jiao Tong University,Institute of Natural Sciences, MOE
[3] Shanghai Jiao Tong University,LSC
[4] Shanghai Jiao Tong University,Qing Yuan Research Institute
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we develop a neural network for the numerical simulation of time-dependent linear transport equations with diffusive scaling and uncertainties. The goal of the network is to resolve the computational challenges of curse-of-dimensionality and multiple scales of the problem. We first show that a standard Physics-Informed Neural Network (PINN) fails to capture the multiscale nature of the problem, hence justifies the need to use Asymptotic-Preserving Neural Networks (APNNs). We show that not all classical AP formulations are directly fit for the neural network approach. We construct a micro-macro decomposition based neural network, and also build in a mass conservation mechanism into the loss function, in order to capture the dynamic and multiscale nature of the solutions. Numerical examples are used to demonstrate the effectiveness of this APNNs.
引用
收藏
相关论文
共 50 条
  • [41] Community Structure in Time-Dependent, Multiscale, and Multiplex Networks
    Mucha, Peter J.
    Richardson, Thomas
    Macon, Kevin
    Porter, Mason A.
    Onnela, Jukka-Pekka
    SCIENCE, 2010, 328 (5980) : 876 - 878
  • [42] The Time-Dependent Asymptotic PN Approximation for the Transport Equation
    Harel, Re'em
    Burov, Stanislav
    Heizler, Shay I.
    NUCLEAR SCIENCE AND ENGINEERING, 2021, 195 (06) : 578 - 597
  • [43] NONLINEAR TIME-DEPENDENT MULTIVELOCITY TRANSPORT EQUATIONS
    PAO, CV
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 44 (03) : 725 - 744
  • [44] ABSTRACT TIME-DEPENDENT TRANSPORT-EQUATIONS
    BEALS, R
    PROTOPOPESCU, V
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 121 (02) : 370 - 405
  • [45] AN ASYMPTOTIC PRESERVING TWO-DIMENSIONAL STAGGERED GRID METHOD FOR MULTISCALE TRANSPORT EQUATIONS
    Kuepper, Kerstin
    Frank, Martin
    Jin, Shi
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) : 440 - 461
  • [46] High-order asymptotic-preserving projective integration schemes for kinetic equations
    Laboratoire de Mathématiques Appliquées aux Systémes, Ecole Centrale Paris, Grande Voie des Vignes, Châtenay-Malabry
    92290, France
    不详
    B-3001, Belgium
    Lect. Notes Comput. Sci. Eng., (387-395):
  • [47] Asymptotic-preserving finite element analysis of Westervelt-type wave equations
    Nikolic, Vanja
    ANALYSIS AND APPLICATIONS, 2025, 23 (04) : 577 - 605
  • [48] NUMERICAL UPSCALING FOR WAVE EQUATIONS WITH TIME-DEPENDENT MULTISCALE COEFFICIENTS*
    Maier, Bernhard
    Verfuerth, Barbara
    MULTISCALE MODELING & SIMULATION, 2022, 20 (04): : 1169 - 1190
  • [49] TIME-DEPENDENT LINEAR TRANSPORT-THEORY
    HEJTMANEK, J
    LECTURE NOTES IN MATHEMATICS, 1984, 1048 : 1 - 59
  • [50] EFFICIENT STOCHASTIC ASYMPTOTIC-PRESERVING IMPLICIT-EXPLICIT METHODS FOR TRANSPORT EQUATIONS WITH DIFFUSIVE SCALINGS AND RANDOM INPUTS
    Jin, Shi
    Lu, Hanqing
    Pareschi, Lorenzo
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (02): : A671 - A696