Construction of Dynamical Quadratic Algebras

被引:0
|
作者
Zoltán Nagy
Jean Avan
Geneviève Rollet>
机构
[1] University of Cergy-Pontoise (CNRS UMR 8089),Laboratory of Theoretical Physics and Modelization
来源
关键词
quadratic algebra; reflection algebra; dynamical Yang–Baxter equation;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a dynamical extension of the quantum quadratic exchange algebras introduced by Freidel and Maillet. It admits two distinct fusion structures. A simple example is provided by the scalar Ruijsenaars-Schneider model. The semi-classical limit is also described.
引用
收藏
页码:1 / 11
页数:10
相关论文
共 50 条
  • [21] A classification of some quadratic algebras
    McGilvray, HC
    ALGEBRA COLLOQUIUM, 2006, 13 (01) : 133 - 148
  • [22] Solvable quadratic Lie algebras
    Linsheng Zhu
    Science in China Series A, 2006, 49 : 477 - 493
  • [23] PERIODIC QUADRATIC JORDAN ALGEBRAS
    HARRIS, RJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A83 - A83
  • [24] QUADRATIC ALGEBRAS AND INTEGRABLE SYSTEMS
    FREIDEL, L
    MAILLET, JM
    PHYSICS LETTERS B, 1991, 262 (2-3) : 278 - 284
  • [25] Universal Algebras for Quadratic Mappings
    Helmstetter, Jacques
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1263 - 1281
  • [26] Solvable quadratic Lie algebras
    ZHU Linsheng Department of Mathematics
    Science in China(Series A:Mathematics), 2006, (04) : 477 - 493
  • [27] SURJECTIVE QUADRATIC JORDAN ALGEBRAS
    Baissalov, Ye
    Aljouiee, A.
    EURASIAN MATHEMATICAL JOURNAL, 2020, 11 (02): : 19 - 29
  • [28] Quadratic duality for chiral algebras
    Gui, Zhengping
    Li, Si
    Zeng, Keyou
    ADVANCES IN MATHEMATICS, 2024, 451
  • [29] Quadratic pairs on biquaternion algebras
    Tignol, JP
    ALGEBRA AND NUMBER THEORY, 2000, 208 : 273 - 286
  • [30] A norm functor for quadratic algebras
    Biesel, Owen
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2024, 65 (01): : 59 - 83