A numerical-analytical method for solving problems of linear viscoelasticity

被引:0
|
作者
Shevchenko V.P. [1 ]
Neskorodev R.N. [1 ]
机构
[1] Donetsk National University, 23 Universitetskaya St.
关键词
algebra of Volterra operators; creep; experimental data; orthotropic plate; relaxation; resolvent operator; viscoelastic;
D O I
10.1007/s10778-014-0629-7
中图分类号
学科分类号
摘要
A numerical method for solving problems of the linear viascoelasticity of an anisotropic body is proposed. The method does not require deriving explicit analytical expressions for the creep and relaxation kernels. The approximate solution of the integral equations is based on using experimental data preliminarily smoothed with filling in data gaps. The results of numerical analysis of the viscoelastic stress state of an orthotropic plate with an elliptic hole are presented © 2014 Springer Science+Business Media New York.
引用
收藏
页码:263 / 273
页数:10
相关论文
共 50 条
  • [1] Numerical-analytical method for solving problems of elasticity with features
    Fedotov, V. P.
    Gorshkov, A. V.
    [J]. VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2005, (38): : 29 - 34
  • [2] On the analytical calculation of integrals in the numerical-analytical method for solving strain problems
    Fedotov, V. P.
    Spevak, L. F.
    [J]. VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2006, (43): : 91 - 98
  • [3] A NUMERICAL-ANALYTICAL ALGORITHM FOR SOLVING CRACK PROBLEMS
    TERESHCHENKO, VY
    [J]. PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1993, 57 (04): : 757 - 760
  • [4] EXPONENTIALLY CONVERGENT NUMERICAL-ANALYTICAL METHOD FOR SOLVING EIGENVALUE PROBLEMS FOR SINGULAR DIFFERENTIAL OPERATORS
    Makarov, Volodymyr
    Dragunov, Denys
    Bohdan, Danyil
    [J]. JOURNAL OF NUMERICAL AND APPLIED MATHEMATICS, 2013, 3 (113): : 72 - 90
  • [5] NUMERICAL-ANALYTICAL METHOD FOR SOLVING OF THE FIRST ORDER PARTIAL QUASI-LINEAR EQUATIONS
    Aliev, Fikret A.
    Aliev, N. A.
    Hasanov, K. G.
    Guliev, A. P.
    Turarov, A. K.
    Isaeva, G. V.
    [J]. TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, 6 (02): : 158 - 164
  • [6] NUMERICAL-ANALYTICAL METHOD FOR SOLVING OF THE FIRST ORDER PARTIAL QUASI-LINEAR EQUATIONS
    Aliev, F. A.
    Aliev, N. A.
    Tagiev, R. M.
    Mammadova, Y. V.
    Rajabov, M. F.
    [J]. PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL I, 2018, : 62 - 64
  • [7] A METHOD FOR SOLVING PROBLEMS OF LINEAR VISCOELASTICITY THEORY
    KAMINSKII, AA
    GAVRILOV, DA
    KEKUKH, SA
    [J]. SOVIET APPLIED MECHANICS, 1987, 23 (08): : 750 - 760
  • [8] THE NUMERICAL-ANALYTICAL METHOD FOR THE SOLUTION OF DYNAMIC CONTACT PROBLEMS
    BORODAI, MD
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1983, (05): : 25 - 28
  • [9] An analytical and numerical method for solving linear and nonlinear vibration problems
    Dai, L
    Singh, MC
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1997, 34 (21) : 2709 - 2731
  • [10] NUMERICAL-ANALYTICAL METHOD OF SOLVING THE SYSTEM OF NON-LINEAR INTEGRAL VOLTERRA-EQUATIONS
    TIVONCHUK, VI
    SHLEPAKOV, LN
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1981, (01): : 84 - 88