Quotients of gravitational instantons

被引:0
|
作者
Evan P. Wright
机构
[1] Stony Brook University,Mathematics Department
来源
关键词
Gravitational instanton; Asymptotically locally Euclidean; Eta invariant; 4-Manifold; Primary: 53C25; Secondary: 53C55; 58J28; 20F34;
D O I
暂无
中图分类号
学科分类号
摘要
A classification result for Ricci-flat anti-self-dual asymptotically locally Euclidean 4-manifolds is obtained: they are either hyperkähler (one of the gravitational instantons classified by Kronheimer), or they are a cyclic quotient of a Gibbons–Hawking space. The possible quotients are described in terms of the monopole set in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^3}$$\end{document} , and it is proved that every such quotient is actually Kähler. The fact that the Gibbons–Hawking spaces are the only gravitational instantons to admit isometric quotients is proved by examining the possible fundamental groups at infinity: most can be ruled out by the classification of three-dimensional spherical space form groups, and the rest are excluded by a computation of the Rohklin invariant (in one case) or the eta invariant (in the remaining family of cases) of the corresponding space forms.
引用
收藏
页码:91 / 108
页数:17
相关论文
共 50 条
  • [21] Twister spinors and gravitational instantons
    Kuhnel, W
    Rademacher, HB
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1996, 38 (04) : 411 - 419
  • [22] Gravitational instantons of constant curvature
    Ratcliffe, JG
    Tschantz, ST
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (09) : 2613 - 2627
  • [23] EXTENDED SUPERSYMMETRY AND GRAVITATIONAL INSTANTONS
    KETOV, SV
    OSETRIN, KY
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1989, 32 (06): : 18 - 21
  • [24] ON SPHERICALLY SYMMETRICAL GRAVITATIONAL INSTANTONS
    GRAVEL, P
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1993, 108 (12): : 1341 - 1347
  • [25] PERIOD DOMAINS FOR GRAVITATIONAL INSTANTONS
    Lee, Tsung-ju
    Lin, Yu-shen
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (08) : 5461 - 5501
  • [26] Topology of toric gravitational instantons
    Nilsson, Gustav
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2024, 96
  • [27] Gravitational Instantons of Type Dk
    Sergey A. Cherkis
    Nigel J. Hitchin
    [J]. Communications in Mathematical Physics, 2005, 260 : 299 - 317
  • [28] A Kummer Construction for Gravitational Instantons
    Olivier Biquard
    Vincent Minerbe
    [J]. Communications in Mathematical Physics, 2011, 308 : 773 - 794
  • [29] Conformal geodesics on gravitational instantons
    Dunajski, Maciej
    Tod, Paul
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2022, 173 (01) : 123 - 154
  • [30] Hodge cohomology of gravitational instantons
    Hausel, T
    Hunsicker, E
    Mazzeo, R
    [J]. DUKE MATHEMATICAL JOURNAL, 2004, 122 (03) : 485 - 548