On Concatenations of Two Padovan and Perrin Numbers

被引:0
|
作者
Fatih Erduvan
机构
[1] İzmit Namık Kemal Anatolia High School,MEB
关键词
Padovan and Perrin numbers; Diophantine equations; Linear forms in logarithms; 11B39; 11J86; 11D61;
D O I
暂无
中图分类号
学科分类号
摘要
Let (Pk)k≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_{k})_{k\ge 0}$$\end{document} and (Rk)k≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R_{k})_{k\ge 0}$$\end{document} be the Padovan and Perrin sequences. In this paper, we found that all Padovan numbers, which are concatenations of two Padovan numbers are 12, 21, 37, 49, 265, 465. Moreover, we showed that the only Perrin number, which is concatenations of two Perrin numbers is 22. That is, we solved the Diophantine equations Pk=10dPm+Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{k}=10^{d}P_{m}+P_{n}$$\end{document} and Rk=10dRm+Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{k}=10^{d}R_{m}+R_{n}$$\end{document} in positive integers (k, m, n),  where d denotes the number of digits of Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}$$\end{document} and Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{n}$$\end{document}, respectively. The proofs based on Baker’s theory and we used linear forms in logarithms and reduction method to solve of these Diophantine equations.
引用
收藏
相关论文
共 50 条
  • [1] On Concatenations of Two Padovan and Perrin Numbers
    Erduvan, Fatih
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (05)
  • [2] On concatenations of Padovan and Perrin numbers
    Bravo, Eric Fernando
    [J]. MATHEMATICAL COMMUNICATIONS, 2023, 28 (01) : 105 - 119
  • [3] Padovan numbers that are concatenations of a Padovan number and a Perrin number
    Duman, Merve Guney
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2024, 89 (01) : 139 - 154
  • [4] On b-concatenations of Padovan and Perrin numbers
    Adedji, Kouessi Norbert
    Kandhil, Neelam
    Togbe, Alain
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [5] Padovan or Perrin numbers that are concatenations of two distinct base b repdigits
    Adedji, Kouessi N.
    Dossou-yovo, Virgile
    Rihane, Salah E. E.
    Togbe, Alain
    [J]. MATHEMATICA SLOVACA, 2023, 73 (01) : 49 - 64
  • [6] Perrin numbers that are concatenations of two repdigits
    Batte, Herbert
    Chalebgwa, Taboka P.
    Ddamulira, Mahadi
    [J]. ARABIAN JOURNAL OF MATHEMATICS, 2022, 11 (03) : 469 - 478
  • [7] Perrin numbers that are concatenations of two repdigits
    Herbert Batte
    Taboka P. Chalebgwa
    Mahadi Ddamulira
    [J]. Arabian Journal of Mathematics, 2022, 11 : 469 - 478
  • [8] PADOVAN NUMBERS THAT ARE CONCATENATIONS OF TWO DISTINCT REPDIGITS
    Ddamulira, Mahadi
    [J]. MATHEMATICA SLOVACA, 2021, 71 (02) : 275 - 284
  • [9] Padovan and Perrin numbers as product of two repdigits
    Salah Eddine Rihane
    Alain Togbé
    [J]. Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [10] Padovan and Perrin numbers as product of two repdigits
    Rihane, Salah Eddine
    Togbe, Alain
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):