Padovan numbers that are concatenations of a Padovan number and a Perrin number

被引:0
|
作者
Duman, Merve Guney [1 ]
机构
[1] Sakarya Univ Appl Sci, Fac Technol, Fundamental Sci Engn, Sakarya, Turkiye
关键词
Diophantine equations; Continued fraction; Linear forms in logarithms; Padovan number; Perrin number; FIBONACCI;
D O I
10.1007/s10998-024-00578-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we determine all Padovan numbers which can be written as concatenations of a Padovan number and a Perrin number. We find that all positive integer solutions to the Diophantine equation Pn=10d<middle dot>Pm+Rk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}=10<^>{d}\cdot P_{m}+R_{k}$$\end{document} where m, n, k are nonnegative integers and d is the number of digits of Rk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{k}$$\end{document} are 12,37,151,351\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ 12,37,151,351\right\} $$\end{document}. Additionally, we find that all positive integer solutions to the Diophantine equation Pn=10d<middle dot>Rm+Pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}=10<^>{d}\cdot R_{m}+P_{k}$$\end{document} where m not equal 1,n,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ne 1,n,$$\end{document}k are nonnegative integers and d is the number of digits of Pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{k}$$\end{document} are 21,37,265\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ 21,37,265\right\} $$\end{document}.
引用
下载
收藏
页码:139 / 154
页数:16
相关论文
共 50 条
  • [1] On concatenations of Padovan and Perrin numbers
    Bravo, Eric Fernando
    MATHEMATICAL COMMUNICATIONS, 2023, 28 (01) : 105 - 119
  • [2] On Concatenations of Two Padovan and Perrin Numbers
    Fatih Erduvan
    Bulletin of the Iranian Mathematical Society, 2023, 49
  • [3] On Concatenations of Two Padovan and Perrin Numbers
    Erduvan, Fatih
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (05)
  • [4] On b-concatenations of Padovan and Perrin numbers
    Adedji, Kouessi Norbert
    Kandhil, Neelam
    Togbe, Alain
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [5] Padovan or Perrin numbers that are concatenations of two distinct base b repdigits
    Adedji, Kouessi N.
    Dossou-yovo, Virgile
    Rihane, Salah E. E.
    Togbe, Alain
    MATHEMATICA SLOVACA, 2023, 73 (01) : 49 - 64
  • [6] Fermat Padovan And Perrin Numbers
    Rihane, Salah Eddine
    Adegbindin, Chefiath Awero
    Togbe, Alain
    JOURNAL OF INTEGER SEQUENCES, 2020, 23 (06)
  • [7] A note on Mersenne Padovan and Perrin numbers
    Kafle, Bir
    Rihane, Salah Eddine
    Togbe, Alain
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (01) : 161 - 170
  • [8] Repdigits as products of consecutive Padovan or Perrin numbers
    Rihane, Salah Eddine
    Togbe, Alain
    ARABIAN JOURNAL OF MATHEMATICS, 2021, 10 (02) : 469 - 480
  • [9] PADOVAN NUMBERS THAT ARE CONCATENATIONS OF TWO DISTINCT REPDIGITS
    Ddamulira, Mahadi
    MATHEMATICA SLOVACA, 2021, 71 (02) : 275 - 284
  • [10] Padovan and Perrin numbers as product of two repdigits
    Salah Eddine Rihane
    Alain Togbé
    Boletín de la Sociedad Matemática Mexicana, 2022, 28