CNN-Based Object Detection and Distance Prediction for Autonomous Driving Using Stereo Images

被引:0
|
作者
Jin Gyu Song
Joon Woong Lee
机构
[1] Chonnam National University,Department of Industrial Engineering
关键词
Autonomous driving; Object detection; Distance prediction; Real-time processing;
D O I
暂无
中图分类号
学科分类号
摘要
Convolutional neural networks (CNNs) have been successful for tasks such as object detection; however, they involve time-consuming processes. Therefore, there are difficulties in applying these CNNs to autonomous driving. Moreover, most autonomous driving technologies require both object detection and distance prediction. However, CNNs that predict distance involve more time-consuming processes than object detection models. In addition, the applications for autonomous driving require object detection and distance prediction accuracy. This paper proposes an end-to-end trainable CNN that can meet these requirements. The proposed CNN accurately implements object detection and distance prediction in real time using stereo images. We demonstrate the superiority of the proposed CNN using stereo images from the KITTI 3D object detection dataset.
引用
下载
收藏
页码:773 / 786
页数:13
相关论文
共 50 条
  • [1] CNN-Based Object Detection and Distance Prediction for Autonomous Driving Using Stereo Images
    Song, Jin Gyu
    Lee, Joon Woong
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2023, 24 (03) : 773 - 786
  • [2] Stereo R-CNN based 3D Object Detection for Autonomous Driving
    Li, Peiliang
    Chen, Xiaozhi
    Shen, Shaojie
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7636 - 7644
  • [3] CNN-Based Salient Object Detection on Hyperspectral Images Using Extended Morphology
    Chhapariya, Koushikey
    Buddhiraju, Krishna Mohan
    Kumar, Anil
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [4] CNN-BASED ENERGY LEARNING FOR MPP OBJECT DETECTION IN SATELLITE IMAGES
    Mabon, J.
    Ortner, M.
    Zerubia, J.
    2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [5] CP-CNN: Computational Parallelization of CNN-Based Object Detectors in Heterogeneous Embedded Systems for Autonomous Driving
    Chun, Dayoung
    Choi, Jiwoong
    Lee, Hyuk-Jae
    Kim, Hyun
    IEEE ACCESS, 2023, 11 : 52812 - 52823
  • [6] CNN-Based Microaneurysm Detection in Fundus Images
    Zhao, Xuegong
    Deng, Jiakun
    Wei, Haoran
    Peng, Zhenming
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2021, 50 (06): : 915 - 920
  • [7] CNN-based End-to-end Autonomous Driving on FPGA Using TVM and VTA
    Uetsuki Toshihiro
    Okuyama Yuichi
    Shin Jungpil
    2021 IEEE 14TH INTERNATIONAL SYMPOSIUM ON EMBEDDED MULTICORE/MANY-CORE SYSTEMS-ON-CHIP (MCSOC 2021), 2021, : 140 - 144
  • [8] Object Classification Using CNN-Based Fusion of Vision and LIDAR in Autonomous Vehicle Environment
    Gao, Hongbo
    Cheng, Bo
    Wang, Jianqiang
    Li, Keqiang
    Zhao, Jianhui
    Li, Deyi
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (09) : 4224 - 4231
  • [9] CNN-based pavement defects detection using grey and depth images
    Li, Peigen
    Zhou, Bin
    Wang, Chuan
    Hu, Guizhang
    Yan, Yong
    Guo, Rongxin
    Xia, Haiting
    AUTOMATION IN CONSTRUCTION, 2024, 158
  • [10] Exploring the Viability of Bypassing the Image Signal Processor for CNN-Based Object Detection in Autonomous Vehicles
    Cahill, Jordan
    Parsi, Ashkan
    Mullins, Darragh
    Horgan, Jonathan
    Ward, Enda
    Eising, Ciaran
    Denny, Patrick
    Deegan, Brian
    Glavin, Martin
    Jones, Edward
    IEEE ACCESS, 2023, 11 : 42302 - 42313