Overexpression of tomato SlTpx improves salt stress tolerance in transgenic tobacco plants by scavenging H2O2

被引:0
|
作者
Shengtai Qiao
Yang Feng
Jinping Yan
Kunzhi Li
Huini Xu
机构
[1] Kunming University of Science and Technology,Faculty of Life Science and Technology
关键词
H; O; Thioredoxin peroxidase; Tomato; NaCl;
D O I
暂无
中图分类号
学科分类号
摘要
Hydrogen peroxide (H2O2) is an important signaling molecule that involved in multiple physiological metabolic processes in plants. Excess H2O2 can destroy biological macromolecules to poison the cell. Thioredoxin peroxidase (Tpx) plays an important role in protecting plants from oxidative damage by clearing H2O2. In this study, tomato Tpx (SlTpx) gene was cloned and bioinformatic analysis was done. The mRNA transcript level of SlTpx in tomato root and leaf was increased significantly after NaCl stress treatment for 12 h. SlTpx overexpression transgenic tobacco plants were obtained to study its function under NaCl stress. The seed germination rate of SlTpx overexpression plants was higher than that in wild type (WT) plants under NaCl treatment. The malondialdehyde (MDA) content and reactive oxygen species (ROS) accumulation in transgenic tobacco were less than in WT under NaCl stress. Transgenic plants had significantly higher antioxidant enzyme activities, proline and total soluble sugar contents, and expression of Na+ metabolism genes in transgenic plants than the WT. Moreover, The SlTpx transgenic seeds showed higher tolerance to H2O2 and methyl viologen (MV) treatment, compared with the WT. Besides, the growth of prokaryotic strain of pET-28a-SlTpx was better than the pET-28a strain with H2O2 treatment. The above results indicate that the SlTpx gene improves the plant salt tolerance by scavenging H2O2.
引用
收藏
页码:321 / 333
页数:12
相关论文
共 50 条
  • [21] Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins
    Wahid, Abdul
    Perveen, Mubaraka
    Gelani, Sadia
    Basra, Shahzad M. A.
    JOURNAL OF PLANT PHYSIOLOGY, 2007, 164 (03) : 283 - 294
  • [22] Overexpression of the wheat expansin gene TaEXPA2 improves oxidative stress tolerance in transgenic Arabidopsis plants
    Chen, Yanhui
    Ren, Yuanqing
    Zhang, Guangqiang
    An, Jie
    Yang, Junjiao
    Wang, Yong
    Wang, Wei
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 124 : 190 - 198
  • [23] Overexpression of a wheat Na+/H+ antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.)
    Rajesh Yarra
    Si-Jie He
    Sadanandam Abbagani
    Biao Ma
    Mallesham Bulle
    Wan-Ke Zhang
    Plant Cell, Tissue and Organ Culture (PCTOC), 2012, 111 : 49 - 57
  • [24] Overexpression of a wheat Na+/H+ antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.)
    Yarra, Rajesh
    He, Si-Jie
    Abbagani, Sadanandam
    Ma, Biao
    Bulle, Mallesham
    Zhang, Wan-Ke
    PLANT CELL TISSUE AND ORGAN CULTURE, 2012, 111 (01) : 49 - 57
  • [25] Tolerance to salt stress in soursop seedlings under different methods of H2O2 application
    Rodrigues da Silva, Andre Alisson
    Capitulino, Jessica Dayanne
    de Lima, Geovani Soares
    Vieira de Azevedo, Carlos Alberto
    de Sa Almeida Veloso, Luana Lucas
    REVISTA CIENCIA AGRONOMICA, 2021, 52 (03):
  • [26] Overexpression of tomato tAPX gene in tobacco improves tolerance to high or low temperature stress
    Sun, W-H
    Duan, M.
    Li, F.
    Shu, D-F
    Yang, S.
    Meng, Q-W
    BIOLOGIA PLANTARUM, 2010, 54 (04) : 614 - 620
  • [27] Overexpression of Malus hupehensis MhSHN1 Gene Enhances Salt and Osmotic Stress Tolerance in Transgenic Tobacco Plants
    J. Y. Zhang
    H. T. Luo
    Z. R. Guo
    Russian Journal of Plant Physiology, 2018, 65 : 857 - 864
  • [28] Overexpression of Malus hupehensis MhSHN1 Gene Enhances Salt and Osmotic Stress Tolerance in Transgenic Tobacco Plants
    Zhang, J. Y.
    Luo, H. T.
    Guo, Z. R.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2018, 65 (06) : 857 - 864
  • [29] Overexpression of DnWRKY11 enhanced salt and drought stress tolerance of transgenic tobacco
    Xiang-Bin Xu
    Yuan-Yuan Pan
    Chun-Ling Wang
    Qi-Cai Ying
    Hong-Miao Song
    Hui-Zhong Wang
    Biologia, 2014, 69 : 994 - 1000
  • [30] Overexpression of DnWRKY11 enhanced salt and drought stress tolerance of transgenic tobacco
    Xu, Xiang-Bin
    Pan, Yuan-Yuan
    Wang, Chun-Ling
    Ying, Qi-Cai
    Song, Hong-Miao
    Wang, Hui-Zhong
    BIOLOGIA, 2014, 69 (08) : 994 - 1000