Nonlinear wavelet methods for high-dimensional backward heat equation

被引:0
|
作者
Rui Li
Jin Ru Wang
机构
[1] Beijing University of Technology,Department of Applied Mathematics
关键词
Backward heat equation; nonlinear wavelet method; convergence; 41A25; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
The backward heat equation is a typical ill-posed problem. In this paper, we shall apply a dual least squares method connecting Shannon wavelet to the following equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ \begin{gathered} u_t (x,y,t) = u_{xx} (x,y,t) + u_{yy} (x,y,t), x \in \mathbb{R}, y \in \mathbb{R}, 0 \leqslant t < 1, \hfill \\ u(x,y,1) = \phi (x,y), x \in \mathbb{R},y \in \mathbb{R}. \hfill \\ \end{gathered} \right.$$\end{document} Motivated by Regińska’s work, we shall give two nonlinear approximate methods to regularize the approximate solutions for high-dimensional backward heat equation, and prove that our methods are convergent.
引用
收藏
页码:913 / 922
页数:9
相关论文
共 50 条
  • [31] Wavelet and Fourier methods for solving the sideways heat equation
    Eldén, L
    Berntsson, F
    Reginska, T
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06): : 2187 - 2205
  • [32] High-dimensional nonlinear wave transitions and their mechanisms
    Zhang, Xue
    Wang, Lei
    Liu, Chong
    Li, Min
    Zhao, Yin-Chuan
    CHAOS, 2020, 30 (11)
  • [33] Online Nonlinear Classification for High-Dimensional Data
    Vanli, N. Denizcan
    Ozkan, Huseyin
    Delibalta, Ibrahim
    Kozat, Suleyman S.
    2015 IEEE INTERNATIONAL CONGRESS ON BIG DATA - BIGDATA CONGRESS 2015, 2015, : 685 - 688
  • [34] On a high-dimensional nonlinear stochastic partial differential
    Boulanba, Lahcen
    Mellouk, Mohamed
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2014, 86 (06) : 975 - 992
  • [35] (G′/G)-expansion method and novel fractal structures for high-dimensional nonlinear physical equation
    Li Bang-Qing
    Ma Yu-Lan
    Xu Mei-Ping
    ACTA PHYSICA SINICA, 2010, 59 (03) : 1409 - 1415
  • [36] A generalized F-expansion method and its application in high-dimensional nonlinear evolution equation
    Chen, J
    He, HS
    Yang, KQ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (02) : 307 - 310
  • [37] A Generalized F-expansion Method and Its Application in High-Dimensional Nonlinear Evolution Equation
    CHEN Jiang
    HE Hong-Sheng
    YANG Kong-Qing Department of Physics
    CommunicationsinTheoreticalPhysics, 2005, 44 (08) : 307 - 310
  • [38] iLAMP: Exploring High-Dimensional Spacing through Backward Multidimensional Projection
    Amorim, Elisa Portes dos Santos
    Brazil, Emilio Vital
    Daniels, Joel, II
    Joia, Paulo
    Nonato, Luis Gustavo
    Sousa, Mario Costa
    2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 53 - 62
  • [39] An improved stability result for a heat equation backward in time with nonlinear source
    Nguyen Huy Tuan
    Pham Hoang Quan
    MATHEMATICAL COMMUNICATIONS, 2012, 17 (01) : 113 - 125
  • [40] Comparison of Two Wavelet Methods for Accurate Solution of Two-Dimensional Nonlinear Volterra Integral Equation
    Ray, S. Saha
    Behera, S.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (06): : 2091 - 2108