Nonlinear wavelet methods for high-dimensional backward heat equation

被引:0
|
作者
Rui Li
Jin Ru Wang
机构
[1] Beijing University of Technology,Department of Applied Mathematics
关键词
Backward heat equation; nonlinear wavelet method; convergence; 41A25; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
The backward heat equation is a typical ill-posed problem. In this paper, we shall apply a dual least squares method connecting Shannon wavelet to the following equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ \begin{gathered} u_t (x,y,t) = u_{xx} (x,y,t) + u_{yy} (x,y,t), x \in \mathbb{R}, y \in \mathbb{R}, 0 \leqslant t < 1, \hfill \\ u(x,y,1) = \phi (x,y), x \in \mathbb{R},y \in \mathbb{R}. \hfill \\ \end{gathered} \right.$$\end{document} Motivated by Regińska’s work, we shall give two nonlinear approximate methods to regularize the approximate solutions for high-dimensional backward heat equation, and prove that our methods are convergent.
引用
收藏
页码:913 / 922
页数:9
相关论文
共 50 条
  • [1] Nonlinear Wavelet Methods for High-dimensional Backward Heat Equation
    Rui LI
    Jin Ru WANG
    Acta Mathematica Sinica,English Series, 2013, (05) : 913 - 922
  • [2] Nonlinear Wavelet Methods for High-dimensional Backward Heat Equation
    Li, Rui
    Wang, Jin Ru
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (05) : 913 - 922
  • [3] Nonlinear Wavelet Methods for High-dimensional Backward Heat Equation
    Rui LI
    Jin Ru WANG
    ActaMathematicaSinica, 2013, 29 (05) : 913 - 922
  • [4] Shannon wavelet regularization methods for a backward heat equation
    Wang, Jin-Ru
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (09) : 3079 - 3085
  • [5] DEEP BACKWARD SCHEMES FOR HIGH-DIMENSIONAL NONLINEAR PDES
    Hure, Come
    Huyen Pham
    Warin, Xavier
    MATHEMATICS OF COMPUTATION, 2020, 89 (324) : 1547 - 1579
  • [6] A regularized method for two dimensional nonlinear heat equation backward in time
    Nguyen Huy Tuan
    Dang Duc Trong
    Pham Hoang Quan
    FILOMAT, 2012, 26 (02) : 83 - 97
  • [7] On Multilevel Picard Numerical Approximations for High-Dimensional Nonlinear Parabolic Partial Differential Equations and High-Dimensional Nonlinear Backward Stochastic Differential Equations
    E, Weinan
    Hutzenthaler, Martin
    Jentzen, Arnulf
    Kruse, Thomas
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (03) : 1534 - 1571
  • [8] On Multilevel Picard Numerical Approximations for High-Dimensional Nonlinear Parabolic Partial Differential Equations and High-Dimensional Nonlinear Backward Stochastic Differential Equations
    Weinan E
    Martin Hutzenthaler
    Arnulf Jentzen
    Thomas Kruse
    Journal of Scientific Computing, 2019, 79 : 1534 - 1571
  • [9] ON HIGH-DIMENSIONAL WAVELET EIGENANALYSIS
    Abry, Patrice
    Boniece, B. cooper
    Didier, Gustavo
    Wendt, Herwig
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (06): : 5287 - 5350
  • [10] The lifespan of solutions to nonlinear systems of a high-dimensional wave equation
    Georgiev, V
    Takamura, H
    Yi, Z
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (10) : 2215 - 2250