The backward heat equation is a typical ill-posed problem. In this paper, we shall apply a dual least squares method connecting Shannon wavelet to the following equation \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{ \begin{gathered}
u_t (x,y,t) = u_{xx} (x,y,t) + u_{yy} (x,y,t), x \in \mathbb{R}, y \in \mathbb{R}, 0 \leqslant t < 1, \hfill \\
u(x,y,1) = \phi (x,y), x \in \mathbb{R},y \in \mathbb{R}. \hfill \\
\end{gathered} \right.$$\end{document} Motivated by Regińska’s work, we shall give two nonlinear approximate methods to regularize the approximate solutions for high-dimensional backward heat equation, and prove that our methods are convergent.