A Study of the Equivalence of the BLUEs between a Partitioned Singular Linear Model and Its Reduced Singular Linear Models

被引:0
|
作者
Bao Xue Zhang*
Bai Sen Liu
Chang Yu Lu**
机构
[1] Beijing Institute of Technology,Department of Applied Mathematics
[2] Fudan University,Institute of Mathematics
[3] Tianjin University,Department of Mathematics
[4] East China Normal University,Department of Statistics
来源
Acta Mathematica Sinica | 2004年 / 20卷
关键词
Singular partitioned linear model; Best linear unbiased estimator; Linear transformation model; Projector;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the partitioned linear regression model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{A}}} = {\left( {y,X_{1} \beta _{1} + X_{2} \beta _{2} ,\sigma ^{2} V} \right)} $$\end{document} and its four reduced linear models, where y is an n × 1 observable random vector with E(y) = Xβ and dispersion matrix Var(y) = σ2V, where σ2 is an unknown positive scalar, V is an n × n known symmetric nonnegative definite matrix, X = (X1 : X2) is an n×(p+q) known design matrix with rank(X) = r ≤ (p+q), and β = (β′ 1: β′2 )′ with β1 and β2 being p×1 and q×1 vectors of unknown parameters, respectively. In this article the formulae for the differences between the best linear unbiased estimators of M2X1β1under the model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{A}}} $$\end{document} and its best linear unbiased estimators under the reduced linear models of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{A}}} $$\end{document} are given, where M2 = I -X2X2+ . Furthermore, the necessary and sufficient conditions for the equalities between the best linear unbiased estimators of M2X1β1 under the model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{A}}} $$\end{document} and those under its reduced linear models are established. Lastly, we also study the connections between the model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{A}}} $$\end{document} and its linear transformation model.
引用
下载
收藏
页码:557 / 568
页数:11
相关论文
共 50 条
  • [31] The best linear unbiased estimator in a singular linear regression model
    Jibo Wu
    Chaolin Liu
    Statistical Papers, 2018, 59 : 1193 - 1204
  • [32] The best linear unbiased estimator in a singular linear regression model
    Wu, Jibo
    Liu, Chaolin
    STATISTICAL PAPERS, 2018, 59 (03) : 1193 - 1204
  • [33] Some further remarks on the singular linear model
    Puntanen, S
    Scott, AJ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 237 : 313 - 327
  • [34] Sensitivity analysis in singular mixed linear models with constraints
    Fiserová, E
    Kubácek, L
    KYBERNETIKA, 2003, 39 (03) : 317 - 332
  • [35] The relations of BLUEs between the original linear model and the misspecified linear model
    Liu, Xin
    Wang, Qing-Wen
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 96 - 99
  • [36] Robustness of F-Tests in Singular Linear Models
    Hong Bing QIU
    Ji LUO
    Jia Jia ZHANG
    Acta Mathematica Sinica,English Series, 2014, 30 (05) : 872 - 880
  • [37] On Bayes linear unbiased estimation of estimable functions for the singular linear model
    ZHANG Weiping & WEI Laisheng Department of Statistics and Finance
    Science China Mathematics, 2005, (07) : 898 - 903
  • [38] Robustness of F-tests in singular linear models
    Qiu, Hong Bing
    Luo, Ji
    Zhang, Jia Jia
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (05) : 872 - 880
  • [39] On Bayes linear unbiased estimation of estimable functions for the singular linear model
    Zhang Weiping
    Wei Laisheng
    Science in China Series A: Mathematics, 2005, 48 (7): : 898 - 903
  • [40] On Bayes linear unbiased estimation of estimable functions for the singular linear model
    Zhang, WP
    Wei, LS
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (07): : 898 - 903