Commutators of parabolic fractional integrals with variable kernels in vanishing generalized variable Morrey spaces

被引:0
|
作者
I. Ekincioglu
S. Z. Khaligova
A. Serbetci
机构
[1] Dumlupinar University,Department of Mathematics
[2] Istanbul Medeniyet University,Department of Mathematics
[3] Azerbaijan State Pedagogical University,Department of Mathematics
[4] Ankara University,undefined
来源
Positivity | 2022年 / 26卷
关键词
Parabolic fractional integral with rough kernel; Vanishing generalized variable Morrey spaces; Commutators; BMO spaces; 42B20; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain the boundedness of parabolic fractional integral operators TΩ,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\Omega ,\alpha }$$\end{document} with variable kernels Ω(·,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\cdot ,\cdot )$$\end{document} belonging to L∞(Rn)×Ls(Sn-1),s>n/(n-α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }({\mathbb {R}^n}) \times L^{s}({\mathbb {S}}^{n-1}), s>n/(n-\alpha )$$\end{document}, and their commutators [b,TΩ,α]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[b,T_{\Omega ,\alpha }]$$\end{document} with BMO functions in variable exponent generalized Morrey spaces Mp(·),φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{p(\cdot ),\varphi }$$\end{document} and variable exponent vanishing generalized Morrey spaces VMp(·),φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{VM}^{p(\cdot ),\varphi }$$\end{document}. We find the sufficient conditions on the pair (φ,ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varphi ,\psi )$$\end{document} which ensures the boundedness of the operators TΩ,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\Omega ,\alpha }$$\end{document} and [b,TΩ,α]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[b,T_{\Omega ,\alpha }]$$\end{document} from Mp(·),φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{p(\cdot ),\varphi }$$\end{document} to Mq(·),ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{q(\cdot ),\psi }$$\end{document} and from VMp(·),φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{VM}^{p(\cdot ),\varphi }$$\end{document} to VMq(·),ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{VM}^{q(\cdot ),\psi }$$\end{document}.
引用
下载
收藏
相关论文
共 50 条