The Pointwise Estimates of Diffusion Wave for the Navier–Stokes Systems in Odd Multi-Dimensions

被引:40
|
作者
Tai-Ping Liu
Weike Wang
机构
[1] Department of Mathematics,
[2] Stanford University,undefined
[3] Stanford,undefined
[4] CA94305,undefined
[5] USA,undefined
[6] Department of Mathematics,undefined
[7] Wuhan University,undefined
[8] Wuhan 430072,undefined
[9] China,undefined
来源
关键词
Detailed Analysis; Green Function; Nonlinear Diffusion; Stokes System; Pointwise Estimate;
D O I
暂无
中图分类号
学科分类号
摘要
We study the dissipation of solutions of the isentropic Navier–Stokes equations in odd multi-dimensions. Pointwise estimates of the time-asymptotic shape of the solutions are obtained and shown to exhibit the generalized Huygen's principle. Our approach is based on the detailed analysis of the Green function of the linearized system. This is used to study the coupling of nonlinear diffusion waves.
引用
收藏
页码:145 / 173
页数:28
相关论文
共 50 条
  • [41] GRADIENT ESTIMATES FOR STOKES AND NAVIER-STOKES SYSTEMS WITH PIECEWISE DMO COEFFICIENTS
    Choi, Jongkeun
    Dong, Hongjie
    Xu, Longjuan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (03) : 3609 - 3635
  • [42] On Nonlocal Cahn–Hilliard–Navier–Stokes Systems in Two Dimensions
    Sergio Frigeri
    Ciprian G. Gal
    Maurizio Grasselli
    Journal of Nonlinear Science, 2016, 26 : 847 - 893
  • [43] Multi-dimensions analysis of solar hybrid CCHP systems with redundant design
    Yang, Xiaohui
    Liu, Kang
    Leng, Zhengyang
    Liu, Tao
    Zhang, Liufang
    Mei, Linghao
    ENERGY, 2022, 253
  • [44] POINTWISE WAVE BEHAVIOR OF THE NON-ISENTROPIC NAVIER-STOKES EQUATIONS IN HALF SPACE
    Li, Hai-Liang
    Tang, Hou-Zhi
    Wang, Hai-Tao
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (03) : 795 - 827
  • [45] NAVIER STOKES DERIVATIVE ESTIMATES IN 3 DIMENSIONS WITH BOUNDARY-VALUES AND BODY FORCES
    DUFF, GFD
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (06): : 1161 - 1212
  • [46] On Nonlocal Cahn-Hilliard-Navier-Stokes Systems in Two Dimensions
    Frigeri, Sergio
    Gal, Ciprian G.
    Grasselli, Maurizio
    JOURNAL OF NONLINEAR SCIENCE, 2016, 26 (04) : 847 - 893
  • [47] Partially integrable systems in multi-dimensions by a variant of the dressing method: part 1
    Zenchuk, A. I.
    Santini, P. M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (20): : 5825 - 5845
  • [48] Nonlinear artificial boundary conditions with pointwise error estimates for the exterior three dimensional Navier-Stokes problem
    Nazarov, SA
    Specovius-Neugebauer, M
    MATHEMATISCHE NACHRICHTEN, 2003, 252 : 86 - 105
  • [49] DECAY ESTIMATES FOR STEADY SOLUTIONS OF THE NAVIER-STOKES EQUATIONS IN TWO DIMENSIONS IN THE PRESENCE OF A WALL
    Boeckle, Christoph
    Wittwer, Peter
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (05) : 3346 - 3368
  • [50] LARGE TIME BEHAVIOR AND DIFFUSION LIMIT FOR A SYSTEM OF BALANCE LAWS FROM CHEMOTAXIS IN MULTI-DIMENSIONS
    Li, Tong
    Wang, Dehua
    Wang, Fang
    Wang, Zhi-An
    Zhao, Kun
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (01) : 229 - 272