Adiabatic Dynamics of Instantons on S4

被引:0
|
作者
Guido Franchetti
Bernd J. Schroers
机构
[1] Leibniz Universität,Institut für Theoretische Physik
[2] Heriot-Watt University,Maxwell Institute for Mathematical Sciences and Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We define and compute the L2 metric on the framed moduli space of circle invariant 1-instantons on the 4-sphere. This moduli space is four dimensional and our metric is SO(3)×U(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${SO(3) \times U(1)}$$\end{document} symmetric. We study the behaviour of generic geodesics and show that the metric is geodesically incomplete. Circle-invariant instantons on the 4-sphere can also be viewed as hyperbolic monopoles, and we interpret our results from this viewpoint. We relate our results to work by Habermann on unframed instantons on the 4-sphere and, in the limit where the radius of the 4-sphere tends to infinity, to results on instantons on Euclidean 4-space.
引用
收藏
页码:185 / 228
页数:43
相关论文
共 50 条
  • [11] Refutations and proofs in S4
    Skura, T
    PROOF THEORY OF MODAL LOGIC, 1996, 2 : 45 - 51
  • [12] ON SOME EXTENSIONS OF S4
    SEGERBERG, K
    JOURNAL OF SYMBOLIC LOGIC, 1970, 35 (02) : 363 - +
  • [13] A RESOLUTION PROVER FOR S4
    BAZYLEV, VY
    SOVIET JOURNAL OF COMPUTER AND SYSTEMS SCIENCES, 1991, 29 (03): : 97 - 101
  • [14] Finite symmetries of S4
    Chen, Weimin
    Kwasik, Slawomir
    Schultz, Reinhard
    FORUM MATHEMATICUM, 2016, 28 (02) : 295 - 310
  • [16] S4 prescribing for podiatrists
    Stephen Marty
    Journal of Foot and Ankle Research, 4 (Suppl 1)
  • [17] GENESIS OF S4 GALLOP
    KLEIN, HO
    NEW ENGLAND JOURNAL OF MEDICINE, 1971, 284 (15): : 852 - &
  • [18] EXOTIC INVOLUTION OF S4
    AKBULUT, S
    KIRBY, R
    TOPOLOGY, 1979, 18 (01) : 75 - 81
  • [19] Valuation Semantics for S4
    Loparic, Andrea M.
    Mortari, Cezar A.
    STUDIA LOGICA, 2024, 113 (2) : 379 - 396
  • [20] BIHARMONIC SURFACES OF S4
    Balmus, Adina
    Oniciuc, Cezar
    KYUSHU JOURNAL OF MATHEMATICS, 2009, 63 (02) : 339 - 345